Modular microchannel cooled heatsinks for high average power laser diode arrays

Detailed performance results for an efficient and low thermal impedance laser diode array heatsink are presented. High duty factor or CW operation of fully filled laser diode arrays is made possible at high average power. Low thermal impedance is achieved using a liquid coolant and laminar flow through microchannels. The microchannels are fabricated in silicon using an anisotropic chemical etching process. A modular rack-and-stack architecture is adopted for the heatsink design, allowing arbitrarily large two-dimensional arrays to be fabricated and easily maintained. The excellent thermal control of the microchannel cooled heatsinks is ideally suited to pump array requirements for high average power crystalline lasers. >

[1]  G. Wallis,et al.  Field Assisted Glass‐Metal Sealing , 1969 .

[2]  R. Pease,et al.  High-performance heat sinking for VLSI , 1981, IEEE Electron Device Letters.

[3]  D. Welch,et al.  High power (2.1 W) 10‐stripe AlGaAs laser arrays with Si disordered facet windows , 1986 .

[4]  D. K. Wagner,et al.  High‐power conversion efficiency quantum well diode lasers , 1987 .

[5]  D. Welch,et al.  High-brightness, high-efficiency, single-quantum-well laser diode array , 1987 .

[6]  Y. Kokubo,et al.  A very narrow-beam AlGaAs laser with a thin tapered-thickness active layer (T 3 laser) , 1987 .

[7]  High‐power (710 mW cw) single‐lobe operation of broad area AlGaAs double heterostructure lasers grown by metalorganic chemical vapor deposition , 1987 .

[8]  R. Beach,et al.  Demonstration of high‐performance silicon microchannel heat exchangers for laser diode array cooling , 1988 .

[9]  J. Shealy High‐efficiency superlattice graded‐index separate confining heterostructure lasers with AlGaAs single quantum wells , 1988 .

[10]  James N. Walpole,et al.  Microchannel heat sinks for two-dimensional high-power-density diode laser arrays , 1989 .

[11]  R. Dalby,et al.  Integrated quantum‐well manifold laser , 1989 .

[12]  James J. Coleman,et al.  Dependence of threshold current density on quantum well composition for strained-layer InGaAs-GaAs lasers by metalorganic chemical vapor deposition , 1989 .

[13]  L. M. Miller,et al.  Nonplanar quantum well heterostructure window laser , 1989 .

[14]  M. Sakamoto,et al.  76 W cw monolithic laser diode arrays , 1989 .

[15]  Ying-Chih Chen,et al.  Long‐lived InGaAs quantum well lasers , 1989 .

[16]  S. Macomber,et al.  Two-dimensional surface emitting distributed feedback laser arrays , 1989, IEEE Photonics Technology Letters.

[17]  Robert J. Bailey,et al.  High-power hybrid two-dimensional surface-emitting AlGaAs diode laser arrays , 1990, Photonics West - Lasers and Applications in Science and Engineering.

[18]  D. Welch,et al.  Performance characteristics of high power CW, 1 cm wide monolithic AlGaAs laser diode arrays with a 2 mm total aperture width , 1990 .

[19]  A. Heuberger,et al.  Anisotropic Etching of Crystalline Silicon in Alkaline Solutions I . Orientation Dependence and Behavior of Passivation Layers , 1990 .

[20]  S. L. Yellen,et al.  Inhibited dark-line defect formation in strained InGaAs/AlGaAs quantum well lasers , 1990, IEEE Photonics Technology Letters.

[21]  Raymond J. Beach,et al.  High‐reliability silicon microchannel submount for high average power laser diode arrays , 1990 .

[22]  Dino R. Ciarlo,et al.  High average power edge emitting laser diode arrays on silicon microchannel coolers , 1990 .

[23]  H.K. Choi,et al.  AlInGaAs-AlGaAs strained single-quantum-well diode lasers , 1991, IEEE Photonics Technology Letters.