Combining DCA (DC Algorithms) and interior point techniques for large-scale nonconvex quadratic programming

In this paper, we provide a new regularization technique based on DC programming and DC Algorithms to handle indefinite Hessians in a primal–dual interior point context for nonconvex quadratic programming problems. The new regularization leads automatically to a strongly factorizable quasidefinite matrix in the Newton system. Numerical results show the robustness and the efficiency of our approach compared with LOQO. Moreover, in our computational testing, our method always provided globally optimal solutions to those nonconvex quadratic programs that arise from reformulations of linear complementarity problems.

[1]  Robert J. Vanderbei,et al.  LOQO User’s Manual – Version 4.05 , 2006 .

[2]  M. Saunders,et al.  SOLVING REGULARIZED LINEAR PROGRAMS USING BARRIER METHODS AND KKT SYSTEMS , 1996 .

[3]  R. Vanderbei LOQO:an interior point code for quadratic programming , 1999 .

[4]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[5]  T. P. Dinh,et al.  Convex analysis approach to d.c. programming: Theory, Algorithm and Applications , 1997 .

[6]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[7]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[8]  J. Gondzio,et al.  Regularized Symmetric Indefinite Systems in Interior Point Methods for Linear and Quadratic Optimization , 1999 .

[9]  Le Thi Hoai An,et al.  A D.C. Optimization Algorithm for Solving the Trust-Region Subproblem , 1998, SIAM J. Optim..

[10]  Hiroshi Yamashita A globally convergent primal-dual interior point method for constrained optimization , 1998 .

[11]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[12]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[13]  Hiroshi Yamashita,et al.  Superlinear and quadratic convergence of some primal-dual interior point methods for constrained optimization , 1996, Math. Program..

[14]  L. Thi,et al.  Analyse numérique des algorithmes de l'optimisation D. C. . Approches locale et globale. Codes et simulations numériques en grande dimension. Applications , 1994 .

[15]  Michael C. Ferris,et al.  Interior-Point Methods for Massive Support Vector Machines , 2002, SIAM J. Optim..

[16]  Le Thi Hoai An,et al.  Solving a Class of Linearly Constrained Indefinite Quadratic Problems by D.C. Algorithms , 1997, J. Glob. Optim..

[17]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[18]  Robert J. Vanderbei,et al.  An Interior-Point Algorithm for Nonconvex Nonlinear Programming , 1999, Comput. Optim. Appl..

[19]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[20]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[21]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[22]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[23]  Nicholas I. M. Gould,et al.  CUTE: constrained and unconstrained testing environment , 1995, TOMS.

[24]  Clyde L. Monma,et al.  An Implementation of a Primal-Dual Interior Point Method for Linear Programming , 1989, INFORMS J. Comput..

[25]  C. Floudas,et al.  Quadratic Optimization , 1995 .

[26]  Michael C. Ferris,et al.  Complementarity and variational problems : state of the art , 1997 .

[27]  Duan Li,et al.  A Globally and Locally Superlinearly Convergent Non--Interior-Point Algorithm for P[sub 0] LCPs , 2002, SIAM J. Optim..

[28]  Berç Rustem,et al.  A primal–dual interior point algorithm with an exact and differentiable merit function for nonlinear programming , 2000 .

[29]  Le Thi Hoai An,et al.  The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems , 2005, Ann. Oper. Res..

[30]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[31]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[32]  Xiaojun Chen,et al.  On Smoothing Methods for the P[sub 0] Matrix Linear Complementarity Problem , 2000, SIAM J. Optim..

[33]  Jean Charles Gilbert,et al.  A truncated SQP algorithm for solving nonconvex equality constrained optimization problems , 2003 .

[34]  R. Vanderbei Symmetric Quasi-Definite Matrices , 2006 .

[35]  Tao Pham Dinh,et al.  Proximal Decomposition on the Graph of a Maximal Monotone Operator , 1995, SIAM J. Optim..

[36]  Jong-Shi Pang,et al.  Complementarity: Applications, Algorithms and Extensions (Applied Optimization) , 2001 .

[37]  Le Thi Hoai An,et al.  A Branch and Bound Method via d.c. Optimization Algorithms and Ellipsoidal Technique for Box Constrained Nonconvex Quadratic Problems , 1998, J. Glob. Optim..

[38]  J. L. Nazareth,et al.  Cholesky-based Methods for Sparse Least Squares : The Benefits of Regularization ∗ , 1996 .

[39]  Michael C. Ferris,et al.  Complementarity: Applications, Algorithms and Extensions , 2010 .

[40]  Jean Charles Gilbert,et al.  Numerical Optimization: Theoretical and Practical Aspects , 2003 .

[41]  Y BensonHande,et al.  Interior-point methods for nonconvex nonlinear programming , 2008 .

[42]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[43]  Le Thi Hoai An,et al.  Large-Scale Molecular Optimization from Distance Matrices by a D.C. Optimization Approach , 2003, SIAM J. Optim..

[44]  J. Frédéric Bonnans,et al.  Numerical Optimization: Theoretical and Practical Aspects (Universitext) , 2006 .