Effects of C‐type natriuretic peptide on rat cardiac contractility

[1]  Y. Furukawa,et al.  CNP causes receptor-mediated positive dromotropic effects in anesthetized dog hearts. , 1998, American journal of physiology. Heart and circulatory physiology.

[2]  J. Mehta,et al.  Evidence for the presence of L-arginine-nitric oxide pathway in human red blood cells: relevance in the effects of red blood cells on platelet function. , 1998, Journal of cardiovascular pharmacology.

[3]  G. Feuerstein,et al.  Neurohormonal activation, oxygen free radicals, and apoptosis in the pathogenesis of congestive heart failure. , 1998, Journal of cardiovascular pharmacology.

[4]  H. H. Chen,et al.  C-type natriuretic peptide: the endothelial component of the natriuretic peptide system. , 1998, Journal of cardiovascular pharmacology.

[5]  J. Diamond,et al.  Cyclic GMP‐dependent protein kinase activation in the absence of negative inotropic effects in the rat ventricle , 1997, British journal of pharmacology.

[6]  A. Takeshita,et al.  Local expression of C-type natriuretic peptide markedly suppresses neointimal formation in rat injured arteries through an autocrine/paracrine loop. , 1997, Circulation.

[7]  R. Cardinal,et al.  Direct chronotropic effects of atrial and C‐type natriuretic peptides in anaesthetized dogs , 1996, British journal of pharmacology.

[8]  W. Paulus,et al.  Myocardial contractile response to nitric oxide and cGMP. , 1996, Circulation.

[9]  O. Carretero,et al.  Mechanisms of action of atrial natriuretic factor and C-type natriuretic peptide. , 1996, Hypertension.

[10]  KotaroSumii,et al.  cGMP-Dependent Protein Kinase Regulation of the L-Type Ca2+ Current in Rat Ventricular Myocytes , 1995 .

[11]  N. Sperelakis,et al.  cGMP-dependent protein kinase regulation of the L-type Ca2+ current in rat ventricular myocytes. , 1995, Circulation research.

[12]  J. Potter,et al.  Cardiac troponin I phosphorylation increases the rate of cardiac muscle relaxation. , 1995, Circulation research.

[13]  E. A. Espiner,et al.  Natriuretic hormones. , 1995, Endocrinology and metabolism clinics of North America.

[14]  T. Doetschman,et al.  Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. , 1994, Circulation research.

[15]  E. Lakatta,et al.  8-bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes. , 1994, Circulation research.

[16]  H. Itoh,et al.  Cytokine-induced C-type natriuretic peptide (CNP) secretion from vascular endothelial cells--evidence for CNP as a novel autocrine/paracrine regulator from endothelial cells. , 1993, Endocrinology.

[17]  M. Anand-Srivastava,et al.  Atrial natriuretic factor receptors and signal transduction mechanisms. , 1993, Pharmacological reviews.

[18]  W. Edwards,et al.  Natriuretic peptide system in human heart failure. , 1993, Circulation.

[19]  W. Barry,et al.  Intracellular Calcium Homeostasis in Cardiac Myocytes , 1993, Circulation.

[20]  M. Brown,et al.  Natriuretic peptide receptor mRNAs in the rat and human heart. , 1992, The Journal of clinical investigation.

[21]  K. Nakao,et al.  Endothelial production of C-type natriuretic peptide and its marked augmentation by transforming growth factor-beta. Possible existence of "vascular natriuretic peptide system". , 1992, The Journal of clinical investigation.

[22]  Simon C Watkins,et al.  Negative inotropic effects of cytokines on the heart mediated by nitric oxide. , 1992, Science.

[23]  D. Goeddel,et al.  Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). , 1991, Science.

[24]  R Fischmeister,et al.  Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[25]  A. Katz Interplay between inotropic and lusitropic effects of cyclic adenosine monophosphate on the myocardial cell. , 1990, Circulation.

[26]  D. Mccall,et al.  Effect of atriopeptin II on Ca influx, contractile behavior and cyclic nucleotide content of cultured neonatal rat myocardial cells. , 1990, Journal of molecular and cellular cardiology.

[27]  L. Neyses,et al.  Action of atrial natriuretic peptide and angiotensin II on the myocardium: studies in isolated rat ventricular cardiomyocytes. , 1989, Biochemical and biophysical research communications.

[28]  D. Brutsaert,et al.  Effects of Damaging the Endocardial Surface on the Mechanical Performance of Isolated Cardiac Muscle , 1988, Circulation research.

[29]  H. C. Hartzell,et al.  Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. , 1988, Progress in biophysics and molecular biology.

[30]  H. Cingolani,et al.  Critical evaluation of isometric indexes of relaxation in rat and cat papillary muscles and toad ventricular strips. , 1986, Journal of molecular and cellular cardiology.

[31]  M. Inui,et al.  Regulation of calcium transport by the ATPase-phospholamban system. , 1983, Journal of molecular and cellular cardiology.

[32]  E. Kranias,et al.  Phosphorylation of troponin I and phospholamban during catecholamine stimulation of rabbit heart , 1982, Nature.

[33]  P. Spieckermann,et al.  Culturing of calcium stable adult cardiac myocytes. , 1982, Journal of molecular and cellular cardiology.

[34]  H. Cingolani,et al.  Effect of isoproterenol on relation between maximal rate of contraction and maximal rate of relaxation. , 1977, The American journal of physiology.

[35]  S. Epstein,et al.  Positive Inotropic Effects of Dibutyryl Cyclic Adenosine 3′,5′‐Monophosphate , 1970, Circulation research.