Brief paper: Practical stabilization of robotic systems by decentralized control

The practical stability of large-scale robotic systems with variable parameters is considered. The control should ensure the system state to belong to a finite region around the nominal trajectory for various values of parameters. The robotic system is considered as a set of decoupled subsystems each of which corresponds to one degree of freedom. For each decoupled subsystem a local controller is synthesized ensuring the practical stability of free subsystem. Then the practical stability of the coupled global system is analysed for various values of mechanical parameters. This permits the synthesis of decentralized control which provides practical stabilization of robotic systems in given finite regions and for the given set of allowable parameter values. Global control is also introduced. Decentralized control for a manipulation robot with variable payload is synthesized.