A Class of A Stable Summation by Parts Time Integration Schemes

Since integration by parts is an important tool when deriving energy or entropy estimates for differential equations, one may conjecture that some form of summation by parts (SBP) property is necessarily involved in provably stable numerical methods. This article contributes to this topic by proposing a novel class of $A$ stable SBP time integration methods including the classical Lobatto IIIA collocation method, not previously formulated as an SBP scheme. Additionally, a related SBP scheme including the classical Lobatto IIIB collocation method is developed.

[1]  M. Anthony,et al.  Advanced linear algebra , 2006 .

[2]  Jan Nordström,et al.  Finite volume methods, unstructured meshes and strict stability for hyperbolic problems , 2003 .

[3]  Philipp Öffner,et al.  Summation-by-parts operators for correction procedure via reconstruction , 2015, J. Comput. Phys..

[4]  Jan Nordström,et al.  Eigenvalue Analysis for Summation-by-Parts Finite Difference Time Discretizations , 2020, SIAM J. Numer. Anal..

[5]  David I. Ketcheson,et al.  Relaxation Runge-Kutta Methods: Conservation and Stability for Inner-Product Norms , 2019, SIAM J. Numer. Anal..

[6]  Zheng Sun,et al.  Strong Stability of Explicit Runge-Kutta Time Discretizations , 2018, SIAM J. Numer. Anal..

[7]  A. Prothero,et al.  On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations , 1974 .

[8]  Jan Nordström,et al.  On pseudo-spectral time discretizations in summation-by-parts form , 2018, J. Comput. Phys..

[9]  Philipp Öffner,et al.  L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} Stability of Explicit Runge–Kutta Schemes , 2017, Journal of Scientific Computing.

[10]  Lisandro Dalcin,et al.  Relaxation Runge-Kutta Methods: Fully Discrete Explicit Entropy-Stable Schemes for the Compressible Euler and Navier-Stokes Equations , 2019, SIAM J. Sci. Comput..

[11]  J. Nordström,et al.  Summation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients , 2004, Journal of Scientific Computing.

[12]  Chi-Wang Shu,et al.  Enforcing Strong Stability of Explicit Runge-Kutta Methods with Superviscosity , 2019, Communications on Applied Mathematics and Computation.

[13]  Jan Nordström,et al.  Finite volume approximations and strict stability for hyperbolic problems , 2001 .

[14]  David C. Del Rey Fernández,et al.  A generalized framework for nodal first derivative summation-by-parts operators , 2014, J. Comput. Phys..

[15]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[16]  Jan Nordström,et al.  The SBP-SAT technique for initial value problems , 2014, J. Comput. Phys..

[17]  Olsson,et al.  SUMMATION BY PARTS, PROJECTIONS, AND STABILITY. I , 2010 .

[18]  D. Gottlieb,et al.  Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes , 1994 .

[19]  Gregor Gassner,et al.  A Skew-Symmetric Discontinuous Galerkin Spectral Element Discretization and Its Relation to SBP-SAT Finite Difference Methods , 2013, SIAM J. Sci. Comput..

[20]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[21]  Magnus Svärd,et al.  Review of summation-by-parts schemes for initial-boundary-value problems , 2013, J. Comput. Phys..

[22]  Hendrik Ranocha,et al.  Relaxation Runge–Kutta Methods for Hamiltonian Problems , 2020, J. Sci. Comput..

[23]  Hendrik Ranocha,et al.  Energy Stability of Explicit Runge-Kutta Methods for Non-autonomous or Nonlinear Problems , 2020, SIAM J. Numer. Anal..

[24]  Hendrik Ranocha,et al.  General Relaxation Methods for Initial-Value Problems with Application to Multistep Schemes , 2020, Numerische Mathematik.

[25]  Hendrik Ranocha,et al.  On strong stability of explicit Runge–Kutta methods for nonlinear semibounded operators , 2018, IMA Journal of Numerical Analysis.

[26]  Hendrik Ranocha,et al.  Discrete Vector Calculus and Helmholtz Hodge Decomposition for Classical Finite Difference Summation by Parts Operators , 2019, Communications on Applied Mathematics and Computation.

[27]  P. Olsson Summation by parts, projections, and stability. II , 1995 .

[28]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[29]  Hendrik Ranocha,et al.  Some notes on summation by parts time integration methods , 2019, Results in Applied Mathematics.

[30]  Chi-Wang Shu,et al.  Stability of the fourth order Runge–Kutta method for time-dependent partial differential equations , 2017 .

[31]  H. Kreiss,et al.  Finite Element and Finite Difference Methods for Hyperbolic Partial Differential Equations , 1974 .

[32]  Magnus Svärd,et al.  On the convergence rates of energy-stable finite-difference schemes , 2019, J. Comput. Phys..

[33]  David C. Del Rey Fernández,et al.  Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations , 2014 .

[34]  D. Gottlieb,et al.  A Stable and Conservative Interface Treatment of Arbitrary Spatial Accuracy , 1999 .

[35]  Ken Mattsson,et al.  An improved projection method , 2018, J. Comput. Phys..

[36]  Philipp Öffner,et al.  Artificial Viscosity for Correction Procedure via Reconstruction Using Summation-by-Parts Operators , 2016 .

[37]  B. Strand Summation by parts for finite difference approximations for d/dx , 1994 .

[38]  David W. Zingg,et al.  High-Order Implicit Time-Marching Methods Based on Generalized Summation-By-Parts Operators , 2014, SIAM J. Sci. Comput..

[39]  Jan Nordström,et al.  Summation-by-parts in time , 2013, J. Comput. Phys..