Active learning: theory and applications

[1]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[2]  Daphne Koller,et al.  Support Vector Machine Active Learning with Applications to Text Classification , 2000, J. Mach. Learn. Res..

[3]  Edward Y. Chang,et al.  Support vector machine active learning for image retrieval , 2001, MULTIMEDIA '01.

[4]  Carlos Guestrin,et al.  Max-norm Projections for Factored MDPs , 2001, IJCAI.

[5]  Daphne Koller,et al.  Active Learning for Structure in Bayesian Networks , 2001, IJCAI.

[6]  R. A. Bailey,et al.  One hundred years of the design of experiments on and off the pages of Biometrika , 2001 .

[7]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Christos Faloutsos,et al.  FALCON: Feedback Adaptive Loop for Content-Based Retrieval , 2000, VLDB.

[9]  Tomaso A. Poggio,et al.  Object recognition and detection by a combination of support vector machine and rotation invariant phase only correlation , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[10]  B. S. Manjunath,et al.  A texture descriptor for browsing and similarity retrieval , 2000, Signal Process. Image Commun..

[11]  Nir Friedman,et al.  Being Bayesian about Network Structure , 2000, UAI.

[12]  Nello Cristianini,et al.  Query Learning with Large Margin Classi ersColin , 2000 .

[13]  Greg Schohn,et al.  Less is More: Active Learning with Support Vector Machines , 2000, ICML.

[14]  Andrew W. Moore,et al.  Q2: memory-based active learning for optimizing noisy continuous functions , 1998, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[15]  Prasad Tadepalli,et al.  Active learning with committees: an approach to efficient learning in text categorization using linear threshold algorithms , 2000 .

[16]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[17]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[18]  Gert Cauwenberghs,et al.  Incremental and Decremental Support Vector Machine Learning , 2000, NIPS.

[19]  Thore Graepel,et al.  Large Scale Bayes Point Machines , 2000, NIPS.

[20]  Daphne Koller,et al.  Active Learning for Parameter Estimation in Bayesian Networks , 2000, NIPS.

[21]  W. Freeman,et al.  Generalized Belief Propagation , 2000, NIPS.

[22]  Nello Cristianini,et al.  Large Margin DAGs for Multiclass Classification , 1999, NIPS.

[23]  Kriengkrai Porkaew,et al.  Query refinement for multimedia similarity retrieval in MARS , 1999, MULTIMEDIA '99.

[24]  Kien A. Hua,et al.  SamMatch: a flexible and efficient sampling-based image retrieval technique for large image databases , 1999, MULTIMEDIA '99.

[25]  Thorsten Joachims,et al.  Text categorization with support vector machines , 1999 .

[26]  Daphne Koller,et al.  Computing Factored Value Functions for Policies in Structured MDPs , 1999, IJCAI.

[27]  Michael Kearns,et al.  Efficient Reinforcement Learning in Factored MDPs , 1999, IJCAI.

[28]  Michael I. Jordan,et al.  Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.

[29]  Nir Friedman,et al.  Learning Bayesian Network Structure from Massive Datasets: The "Sparse Candidate" Algorithm , 1999, UAI.

[30]  Gregory F. Cooper,et al.  Causal Discovery from a Mixture of Experimental and Observational Data , 1999, UAI.

[31]  David A. McAllester PAC-Bayesian model averaging , 1999, COLT '99.

[32]  Craig Boutilier,et al.  Decision-Theoretic Planning: Structural Assumptions and Computational Leverage , 1999, J. Artif. Intell. Res..

[33]  Thorsten Joachims,et al.  Transductive Inference for Text Classification using Support Vector Machines , 1999, ICML.

[34]  Sharad Mehrotra,et al.  Query reformulation for content based multimedia retrieval in MARS , 1999, Proceedings IEEE International Conference on Multimedia Computing and Systems.

[35]  Yoshua Bengio,et al.  Object Recognition with Gradient-Based Learning , 1999, Shape, Contour and Grouping in Computer Vision.

[36]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[37]  Ralf Herbrich,et al.  Bayes Point Machines: Estimating the Bayes Point in Kernel Space , 1999 .

[38]  Peter Sollich Probabilistic interpretations and Bayesian methods for support vector machines , 1999 .

[39]  Daphne Koller,et al.  Probabilistic reasoning for complex systems , 1999 .

[40]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[41]  David Heckerman,et al.  A Tutorial on Learning with Bayesian Networks , 1999, Innovations in Bayesian Networks.

[42]  Wei-Ying Ma,et al.  Benchmarking of image features for content-based retrieval , 1998, Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284).

[43]  Susan T. Dumais,et al.  Inductive learning algorithms and representations for text categorization , 1998, CIKM '98.

[44]  Thomas S. Huang,et al.  Supporting Ranked Boolean Similarity Queries in MARS , 1998, IEEE Trans. Knowl. Data Eng..

[45]  Salvatore J. Stolfo,et al.  Toward Scalable Learning with Non-Uniform Class and Cost Distributions: A Case Study in Credit Card Fraud Detection , 1998, KDD.

[46]  Christos Faloutsos,et al.  MindReader: Querying Databases Through Multiple Examples , 1998, VLDB.

[47]  Andrew McCallum,et al.  Employing EM and Pool-Based Active Learning for Text Classification , 1998, ICML.

[48]  Eric Horvitz,et al.  The Lumière Project: Bayesian User Modeling for Inferring the Goals and Needs of Software Users , 1998, UAI.

[49]  Susan T. Dumais,et al.  A Bayesian Approach to Filtering Junk E-Mail , 1998, AAAI 1998.

[50]  Rajeev Motwani,et al.  Random sampling for histogram construction: how much is enough? , 1998, SIGMOD '98.

[51]  J. C. BurgesChristopher A Tutorial on Support Vector Machines for Pattern Recognition , 1998 .

[52]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[53]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[54]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[55]  Robert Tibshirani,et al.  Classification by Pairwise Coupling , 1997, NIPS.

[56]  L. Breiman No Bayesians in foxholes , 1997 .

[57]  Avi Pfeffer,et al.  Object-Oriented Bayesian Networks , 1997, UAI.

[58]  Yiming Yang,et al.  A Comparative Study on Feature Selection in Text Categorization , 1997, ICML.

[59]  Prasad Tadepalli,et al.  Active Learning with Committees for Text Categorization , 1997, AAAI/IAAI.

[60]  David A. Cohn,et al.  Minimizing Statistical Bias with Queries , 1996, NIPS.

[61]  Adnan Darwiche,et al.  Inference in belief networks: A procedural guide , 1996, Int. J. Approx. Reason..

[62]  Craig Boutilier,et al.  Context-Specific Independence in Bayesian Networks , 1996, UAI.

[63]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[64]  David D. Lewis,et al.  A sequential algorithm for training text classifiers: corrigendum and additional data , 1995, SIGF.

[65]  David Heckerman,et al.  A Bayesian Approach to Learning Causal Networks , 1995, UAI.

[66]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[67]  Shlomo Argamon,et al.  Committee-Based Sampling For Training Probabilistic Classi(cid:12)ers , 1995 .

[68]  Harris Drucker,et al.  Comparison of learning algorithms for handwritten digit recognition , 1995 .

[69]  David A. Cohn,et al.  Active Learning with Statistical Models , 1996, NIPS.

[70]  William A. Gale,et al.  A sequential algorithm for training text classifiers , 1994, SIGIR '94.

[71]  David D. Lewis,et al.  Heterogeneous Uncertainty Sampling for Supervised Learning , 1994, ICML.

[72]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[73]  Nevin L. Zhang,et al.  A simple approach to Bayesian network computations , 1994 .

[74]  David Heckerman,et al.  Troubleshooting Under Uncertainty , 1994 .

[75]  G. Raab,et al.  Bayesian analysis of binary data from an audit of cervical smears. , 1993, Statistics in medicine.

[76]  Pavel Brazdil,et al.  Proceedings of the European Conference on Machine Learning , 1993 .

[77]  Eric Horvitz,et al.  A decision-theoretic approach to the display of information for time-critical decisions: The Vista project , 1993 .

[78]  P. Spirtes,et al.  Causation, prediction, and search , 1993 .

[79]  H. Sebastian Seung,et al.  Query by committee , 1992, COLT '92.

[80]  David J. C. MacKay,et al.  Information-Based Objective Functions for Active Data Selection , 1992, Neural Computation.

[81]  S. Odewahn,et al.  Automated star/galaxy discrimination with neural networks , 1992 .

[82]  Jia-Guu Leu Computing a shape's moments from its boundary , 1991, Pattern Recognit..

[83]  Eric Horvitz,et al.  Time-Dependent Utility and Action Under Uncertainty , 1991, UAI.

[84]  Wray L. Buntine Theory Refinement on Bayesian Networks , 1991, UAI.

[85]  David Applegate,et al.  Sampling and integration of near log-concave functions , 1991, STOC '91.

[86]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[87]  Ross D. Shachter,et al.  Simulation Approaches to General Probabilistic Inference on Belief Networks , 2013, UAI.

[88]  Keiji Kanazawa,et al.  A model for reasoning about persistence and causation , 1989 .

[89]  David Heckerman,et al.  An empirical comparison of three inference methods , 2013, UAI.

[90]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[91]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[92]  Stuart German,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1988 .

[93]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[94]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[95]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[96]  P. Brown Theory of Point Estimation , 1984 .

[97]  Tom M. Mitchell,et al.  Generalization as Search , 2002 .

[98]  Martin F. Porter,et al.  An algorithm for suffix stripping , 1997, Program.

[99]  J. Moran,et al.  Sensation and perception , 1980 .

[100]  Hideyuki Tamura,et al.  Textural Features Corresponding to Visual Perception , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[101]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[102]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[103]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[104]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[105]  M. Degroot Optimal Statistical Decisions , 1970 .

[106]  Ronald A. Howard,et al.  Decision analysis: Perspectives on inference, decision, and experimentation , 1970 .

[107]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[108]  Abraham Wald,et al.  Statistical Decision Functions , 1951 .

[109]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .