Stochastic averaging of energy harvesting systems

Abstract A stochastic averaging method is proposed for nonlinear energy harvesters subjected to external white Gaussian noise and parametric excitations. The Fokker–Planck–Kolmogorov equation of the coupled electromechanical system of energy harvesting is a three variables nonlinear parabolic partial differential equation whose exact stationary solutions are generally hard to find. In order to overcome difficulties in solving higher dimensional nonlinear partial differential equations, a transformation scheme is applied to decouple the electromechanical equations. The averaged Ito equations are derived via the standard stochastic averaging method, then the FPK equations of the decoupled system are obtained. The exact stationary solution of the averaged FPK equation is used to determine the probability densities of the displacement, the velocity, the amplitude, the joint probability densities of the displacement and velocity, and the power of the stationary response. The effects of the system parameters on the output power are examined. The approximate analytical outcomes are qualitatively and quantitatively supported by the Monte Carlo simulations.

[1]  L. Gammaitoni,et al.  Nonlinear energy harvesting. , 2008, Physical review letters.

[2]  Weiqiu Zhu,et al.  Random Vibration: A Survey of Recent Developments , 1983 .

[3]  Yong Wang,et al.  Semi-analytical solution of random response for nonlinear vibration energy harvesters , 2015 .

[4]  Sondipon Adhikari,et al.  The analysis of piezomagnetoelastic energy harvesters under broadband random excitations , 2011 .

[5]  A. Erturk,et al.  On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion , 2014 .

[6]  Just L. Herder,et al.  Bistable vibration energy harvesters: A review , 2013 .

[7]  Li Yuan,et al.  On the energy harvesting potential of a nonlinear SD oscillator , 2013 .

[8]  D. Inman,et al.  Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling , 2011 .

[9]  Daniel J. Inman,et al.  Piezoelectric Energy Harvesting , 2011 .

[10]  N. Elvin,et al.  Advances in energy harvesting methods , 2013 .

[11]  P. Spanos,et al.  Stochastic averaging: An approximate method of solving random vibration problems , 1986 .

[12]  Igor Neri,et al.  Nonlinear oscillators for vibration energy harvesting , 2009 .

[13]  Yaowen Yang,et al.  Toward Broadband Vibration-based Energy Harvesting , 2010 .

[14]  V. V. Bolotin,et al.  Random vibrations of elastic systems , 1984 .

[15]  Mohammed F. Daqaq,et al.  Influence of Potential Function Asymmetries on the Performance of Nonlinear Energy Harvesters Under White Noise , 2014 .

[16]  Ryan L. Harne,et al.  A review of the recent research on vibration energy harvesting via bistable systems , 2013 .

[17]  Yang Zhu,et al.  Enhanced buckled-beam piezoelectric energy harvesting using midpoint magnetic force , 2013 .

[18]  Xiaoling Jin,et al.  Stochastic averaging for nonlinear vibration energy harvesting system , 2014 .

[19]  H. Saunders,et al.  Random vibration of structures , 1986 .

[20]  Neil D. Sims,et al.  Energy harvesting from the nonlinear oscillations of magnetic levitation , 2009 .

[21]  Stochastic averaging of quasi-integrable Hamiltonian systems under combined harmonic and white noise excitations , 2004 .

[22]  Kais Atallah,et al.  The benefits of Duffing-type nonlinearities and electrical optimisation of a mono-stable energy harvester under white Gaussian excitations , 2012 .

[23]  Grzegorz Litak,et al.  Magnetopiezoelastic energy harvesting driven by random excitations , 2010 .

[24]  Daniel J. Inman,et al.  Piezoelectric energy harvesting from broadband random vibrations , 2009 .

[25]  Mohammed F. Daqaq,et al.  On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations , 2012 .

[26]  Alper Erturk,et al.  Enhanced broadband piezoelectric energy harvesting using rotatable magnets , 2013 .

[27]  Mohammed F. Daqaq,et al.  Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise , 2011 .

[28]  Mohammed F. Daqaq,et al.  Response of duffing-type harvesters to band-limited noise , 2013 .

[29]  Sondipon Adhikari,et al.  Fokker–Planck equation analysis of randomly excited nonlinear energy harvester , 2014 .

[30]  J. B. Roberts Effect of Parametric Excitation on Ship Rolling Motion in Random Waves , 1982 .

[31]  Mohammed F. Daqaq,et al.  New Insights Into Utilizing Bistability for Energy Harvesting Under White Noise , 2015 .

[32]  Mohammed F. Daqaq,et al.  Response of uni-modal duffing-type harvesters to random forced excitations , 2010 .

[33]  Brian P. Mann,et al.  Investigations of a nonlinear energy harvester with a bistable potential well , 2010 .

[34]  Weiqiu Zhu,et al.  Recent Developments and Applications of the Stochastic Averaging Method in Random Vibration , 1996 .

[35]  Thiago Seuaciuc-Osório,et al.  Investigation of Power Harvesting via Parametric Excitations , 2009 .

[36]  Li-Qun Chen,et al.  Internal Resonance Energy Harvesting , 2015 .

[37]  Li-Qun Chen,et al.  Snap-through piezoelectric energy harvesting , 2014 .

[38]  Li-Qun Chen,et al.  An equivalent linearization technique for nonlinear piezoelectric energy harvesters under Gaussian white noise , 2014, Commun. Nonlinear Sci. Numer. Simul..

[39]  Liqun Chen,et al.  Energy harvesting of monostable Duffing oscillator under Gaussian white noise excitation , 2013 .