Multidimensional solutions of space–fractional diffusion equations

Green's functions and propagators for the multidimensional diffusion equation involving a fractional Laplacian operator are obtained in integral form. Their properties are studied analytically and numerically. Anisotropic space–fractional equations and their fundamental solutions are constructed.

[1]  Francesco Mainardi,et al.  Approximation of Levy-Feller Diffusion by Random Walk , 1999 .

[2]  Andrzej Hanygad,et al.  Multidimensional solutions of time-fractional diffusion-wave equations , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  Andrzej Hanyga Fractional diffusion and wave equations , 2002 .

[4]  A. Hanyga,et al.  Multi–dimensional solutions of space–time–fractional diffusion equations , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  V. M. Kenkre,et al.  Generalized master equations for continuous-time random walks , 1973 .

[6]  Francesco Mainardi,et al.  Fractional calculus and stable probability distributions , 1998 .

[7]  Hazime Mori,et al.  Anomalous Diffusion Due to Accelerator Modes in the Standard Map , 1991 .

[8]  Alexander I. Saichev,et al.  Fractional kinetic equations: solutions and applications. , 1997, Chaos.

[9]  Francesco Mainardi,et al.  The fractional Fick's law for non-local transport processes , 2001 .

[10]  Bruce J. West,et al.  Dynamical approach to anomalous diffusion: Response of Lévy processes to a perturbation. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  Meiss Class renormalization: Islands around islands. , 1986, Physical review. A, General physics.

[12]  John N. Tsitsiklis,et al.  Introduction to Probability , 2002 .

[13]  Bruce J. West,et al.  FRACTIONAL DIFFUSION AND LEVY STABLE PROCESSES , 1997 .

[14]  George M. Zaslavsky,et al.  Fractional kinetic equation for Hamiltonian chaos , 1994 .

[15]  J. Meiss Symplectic maps, variational principles, and transport , 1992 .

[16]  G. Shilov,et al.  DEFINITION AND SIMPLEST PROPERTIES OF GENERALIZED FUNCTIONS , 1964 .

[17]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[18]  Hiroki Hata,et al.  Long-Time Correlations and Anomalous Diffusion Due to Accelerator Modes in the Standard Maps , 1990 .

[19]  D. Benson,et al.  Multidimensional advection and fractional dispersion. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[21]  V. Zolotarev,et al.  Chance and Stability, Stable Distributions and Their Applications , 1999 .

[22]  Monica Moroni,et al.  Statistical mechanics with three-dimensional particle tracking velocimetry experiments in the study of anomalous dispersion. II. Experiments , 2001 .

[23]  J. Klafter,et al.  Scale-invariant motion in intermittent chaotic systems. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  Boris Rubin,et al.  Fractional Integrals and Potentials , 1996 .

[25]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[26]  Bruce J. West,et al.  Fractal dimensionality of Lévy processes. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[27]  G. Zaslavsky From Lévy flights to the fractional kinetic equation for dynamical chaos , 1995 .

[28]  G. Baumann,et al.  Anomalous relaxation and diffusion processes in complex systems a , 2000 .

[29]  E. Montroll,et al.  CHAPTER 2 – On an Enriched Collection of Stochastic Processes* , 1979 .

[30]  J. Kahane Definition of stable laws, infinitely divisible laws, and Lévy processes , 1995 .

[31]  Charles M. Grinstead,et al.  Introduction to probability , 1999, Statistics for the Behavioural Sciences.

[32]  Michael F. Shlesinger,et al.  Lévy description of anomalous diffusion in dynamical systems , 1995 .

[33]  G. M. Zaslavskii Physics of Chaos in Hamiltonian Systems , 1998 .

[34]  R. Metzler,et al.  Fractional model equation for anomalous diffusion , 1994 .

[35]  G. Zaslavsky,et al.  Channeling and percolation in two-dimensional chaotic dynamics. , 1991, Chaos.

[36]  T. Geisel Lévy walks in chaotic systems: Useful formulas and recent applications , 1992 .

[37]  Francesco Mainardi,et al.  Probability distributions generated by fractional diffusion equations , 2007, 0704.0320.

[38]  Edward Ott,et al.  Markov tree model of transport in area-preserving maps , 1985 .