Structure-function analysis of the bacterial aromatic ring-hydroxylating dioxygenases.

Publisher Summary The bacterial aromatic ring-hydroxylating dioxygenases represent a broad range of multi-component enzymes that possess many properties and mechanisms in common. This has enabled their classification based on structural properties. This classification has been supported by sequence comparisons based on nucleotide and primary amino-acid sequences. Comparison of the low homology sequences has also enabled the identification of highly conserved functional motifs—for example iron-sulphur ligation domains—whereas analysis of high homology sequences has allowed the characterization of amino acids involved in more specific functions, such as the control of substrate specificity. This combination of sequence analysis with structure-function studies proves to be invaluable for future protein engineering of improved enzymes for both biocatalysis and environmental remediation. The chapter focuses on the ring-hydroxylating dioxygenases, referring to ring-cleavage dioxygenases and other related systems, and also describes bacterial oxygenases and dioxygenases.

[1]  P. Terpstra,et al.  Prediction of the Occurrence of the ADP-binding βαβ-fold in Proteins, Using an Amino Acid Sequence Fingerprint , 1986 .

[2]  C. Nakatsu,et al.  The nucleotide sequence of the Tn5271 3-chlorobenzoate 3,4-dioxygenase genes (cbaAB) unites the class IA oxygenases in a single lineage. , 1995, Microbiology.

[3]  D. Jerina,et al.  The absolute stereochemistry of several cis-dihydrodiols microbially produced from substituted benzenes , 1977 .

[4]  B. Trumpower,et al.  Mutational analysis of the mitochondrial Rieske iron-sulfur protein of Saccharomyces cerevisiae. III. Import, protease processing, and assembly into the cytochrome bc1 complex of iron-sulfur protein lacking the iron-sulfur cluster. , 1991, The Journal of biological chemistry.

[5]  M. Narro,et al.  Purification and properties of NADH-ferredoxinTOL reductase. A component of toluene dioxygenase from Pseudomonas putida. , 1981, The Journal of biological chemistry.

[6]  D. Gibson,et al.  Recombinant Escherichia coli strains synthesize active forms of naphthalene dioxygenase and its individual α and β subunits , 1994 .

[7]  Stephen J. Lippard,et al.  Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane , 1993, Nature.

[8]  Israel Hanukoglu,et al.  cDNA sequence of adrenodoxin reductase. Identification of NADP-binding sites in oxidoreductases. , 1989, European journal of biochemistry.

[9]  M. Shiaris,et al.  Metabolism of naphthalene, fluorene, and phenanthrene: preliminary characterization of a cloned gene cluster from Pseudomonas putida NCIB 9816 , 1994, Journal of bacteriology.

[10]  A. Goyal,et al.  Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39 , 1996, Applied and environmental microbiology.

[11]  J. Penner‐Hahn,et al.  X-ray absorption spectroscopy of the [2Fe-2S] Rieske cluster in Pseudomonas cepacia phthalate dioxygenase. Determination of core dimensions and iron ligation. , 1989, Biochemistry.

[12]  H. Tan,et al.  The Pseudomonas putida ML2 plasmid-encoded genes for benzene dioxygenase are unusual in codon usage and low in G+C content. , 1993, Gene.

[13]  R. Cammack,et al.  The electron-transport proteins of hydroxylating bacterial dioxygenases. , 1992, Annual review of microbiology.

[14]  P. Geary,et al.  Properties of the iron--sulphur proteins of the benzene dioxygenase system from Pseudomonas putida. , 1979, Biochemical Journal.

[15]  W. S. Zaugg,et al.  STUDIES ON THE ELECTRON TRANSFER SYSTEM. 58. PROPERTIES OF A NEW OXIDATION-REDUCTION COMPONENT OF THE RESPIRATORY CHAIN AS STUDIED BY ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY. , 1964, The Journal of biological chemistry.

[16]  D. Ballou,et al.  Purification and characterization of phthalate oxygenase and phthalate oxygenase reductase from Pseudomonas cepacia. , 1987, The Journal of biological chemistry.

[17]  D. Ballou,et al.  Resonance Raman spectra of the [2Fe-2S] clusters of the Rieske protein from Thermus and phthalate dioxygenase from Pseudomonas , 1987 .

[18]  N. Ogawa,et al.  Genes in PHT plasmid encoding the initial degradation pathway of phthalate in Pseudomonas putida , 1992 .

[19]  G. Vriend,et al.  Rubredoxin reductase of Pseudomonas oleovorans. Structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints. , 1990, Journal of molecular biology.

[20]  F. Bernhardt,et al.  Dioxygen activation by putidamonooxin: substrate-modulated reaction of activated dioxygen. , 1982, Biochemical and biophysical research communications.

[21]  K. Gersonde,et al.  Dioxygen-activating iron center in putidamonooxin. Electron spin resonance investigation of the nitrosylated putidamonooxin. , 1985, European journal of biochemistry.

[22]  B. Hoffman,et al.  Electron-nuclear double resonance spectroscopy of 15N-enriched phthalate dioxygenase from Pseudomonas cepacia proves that two histidines are coordinated to the [2Fe-2S] Rieske-type clusters. , 1989, Biochemistry.

[23]  R. Kurane,et al.  Purification and Properties of Phthalate Oxygenase from Rhodococcus erythropolis S-1 , 1993 .

[24]  B. Ensley,et al.  Naphthalene dioxygenase: purification and properties of a terminal oxygenase component , 1983, Journal of bacteriology.

[25]  K. Furukawa,et al.  Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. , 1992, The Journal of biological chemistry.

[26]  S. Fetzner,et al.  Purification and some properties of 2-halobenzoate 1,2-dioxygenase, a two-component enzyme system from Pseudomonas cepacia 2CBS , 1992, Journal of bacteriology.

[27]  T. Leisinger,et al.  Terephthalate 1,2-dioxygenase system from Comamonas testosteroni T-2: purification and some properties of the oxygenase component , 1994, Journal of bacteriology.

[28]  D. Baker,et al.  Stereospecificity of hydride removal from NADH by reductases of multicomponent nonheme iron oxygenase systems , 1995, Journal of bacteriology.

[29]  R. Raag,et al.  Crystal structure of the carbon monoxide-substrate-cytochrome P-450CAM ternary complex. , 1989, Biochemistry.

[30]  T. Sawada,et al.  Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82 , 1994, Journal of bacteriology.

[31]  B. Ensley,et al.  Oxidation of naphthalene by a multicomponent enzyme system from Pseudomonas sp. strain NCIB 9816 , 1982, Journal of bacteriology.

[32]  D. Gibson,et al.  Purification and characterization of the oxygenase component of biphenyl 2,3-dioxygenase from Pseudomonas sp. strain LB400 , 1995, Journal of bacteriology.

[33]  J. Widom,et al.  3,4-Dihydroxyphenylacetate 2,3-dioxygenase. A manganese(II) dioxygenase from Bacillus brevis. , 1981, The Journal of biological chemistry.

[34]  D. Gibson,et al.  Purification and properties of NADH-ferredoxinNAP reductase, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816 , 1990, Journal of bacteriology.

[35]  D. Gibson,et al.  Stereospecific hydroxylation of indan by Escherichia coli containing the cloned toluene dioxygenase genes from Pseudomonas putida F1 , 1992, Applied and environmental microbiology.

[36]  B. Trumpower,et al.  Isolation and characterization of the nuclear gene encoding the Rieske iron-sulfur protein (RIP1) from Saccharomyces cerevisiae. , 1987, The Journal of biological chemistry.

[37]  C. C. Correll,et al.  Structure and mechanism of the iron‐sulfur flavoprotein phthalate dioxygenase reductase , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[38]  D. Gibson,et al.  Oxidative release of nitrite from 2-nitrotoluene by a three-component enzyme system from Pseudomonas sp. strain JS42 , 1994, Journal of bacteriology.

[39]  L. Wackett,et al.  Desaturation, dioxygenation, and monooxygenation reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp. strain 9816-4 , 1995, Journal of bacteriology.

[40]  D. Gibson,et al.  Oxidation of polychlorinated biphenyls by Pseudomonas sp. strain LB400 and Pseudomonas pseudoalcaligenes KF707 , 1993, Journal of bacteriology.

[41]  R. Hausinger,et al.  Pseudomonas aeruginosa 142 uses a three-component ortho-halobenzoate 1,2-dioxygenase for metabolism of 2,4-dichloro- and 2-chlorobenzoate , 1994, Journal of bacteriology.

[42]  A. Bairoch,et al.  Nucleotide sequences of the Acinetobacter calcoaceticus benABC genes for benzoate 1,2-dioxygenase reveal evolutionary relationships among multicomponent oxygenases , 1991, Journal of bacteriology.

[43]  D. Gibson,et al.  Purification and properties of ferredoxinNAP, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816 , 1990, Journal of bacteriology.

[44]  B. Halliwell,et al.  Oxygen toxicity, oxygen radicals, transition metals and disease. , 1984, The Biochemical journal.

[45]  G. Hauska,et al.  Chloroplast Rieske Center. EPR study on its spectral characteristics, relaxation and orientation properties. , 1991, The Journal of biological chemistry.

[46]  S. Harayama,et al.  Functional and evolutionary relationships among diverse oxygenases. , 1992, Annual review of microbiology.

[47]  B. Trumpower Cytochrome bc1 complexes of microorganisms. , 1990, Microbiological reviews.

[48]  J. W. Whittaker,et al.  Magnetic circular dichroism studies on the mononuclear ferrous active site of phthalate dioxygenase from Pseudomonas cepacia show a change of ligation state on substrate binding. , 1993, Biochemistry.

[49]  F. Daldal,et al.  Potential ligands to the [2Fe-2S] Rieske cluster of the cytochrome bc1 complex of Rhodobacter capsulatus probed by site-directed mutagenesis. , 1992, Biochemistry.

[50]  A. Trautwein,et al.  Mössbauer studies on the active Fe ... [2Fe-2S] site of putidamonooxin, its electron transport and dioxygen activation mechanism. , 1981, European journal of biochemistry.

[51]  R. Cammack,et al.  ESEEM and ENDOR studies of the Rieske iron-sulphur protein in bovine heart mitochondrial membranes. , 1994, Biochimica et biophysica acta.

[52]  H. Meyer,et al.  N‐terminal amino acid sequence of the Rieske iron‐sulfur protein from the cytochrome b 6/f‐complex of spinach thylakoids , 1986 .

[53]  D. Gibson,et al.  Incorporation of oxygen-18 into benzene by Pseudomonas putida. , 1970, Biochemistry.

[54]  D. Hearshen,et al.  Purification and characterization of the Rieske iron-sulfur protein from Thermus thermophilus. Evidence for a [2Fe-2S] cluster having non-cysteine ligands. , 1984, The Journal of biological chemistry.

[55]  D. Gibson,et al.  Monohydroxylation of phenol and 2,5-dichlorophenol by toluene dioxygenase in Pseudomonas putida F1 , 1989, Applied and environmental microbiology.

[56]  H. Tan,et al.  Substitution of the ISP alpha subunit of biphenyl dioxygenase from Pseudomonas results in a modification of the enzyme activity. , 1994, Biochemical and biophysical research communications.

[57]  D. Gibson,et al.  Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. , 1989, The Journal of biological chemistry.

[58]  J. Lipscomb,et al.  Spectroscopic studies of isopenicillin N synthase. A mononuclear nonheme Fe2+ oxidase with metal coordination sites for small molecules and substrate. , 1989, The Journal of biological chemistry.

[59]  Y. Wang,et al.  Sequence and expression of the bpdC1C2BADE genes involved in the initial steps of biphenyl/chlorobiphenyl degradation by Rhodococcus sp. M5. , 1995, Gene.

[60]  F. Guerlesquin,et al.  Structure, function and evolution of bacterial ferredoxins. , 1988, FEMS microbiology reviews.

[61]  K. Lee,et al.  Stereospecific sulfoxidation by toluene and naphthalene dioxygenases. , 1995, Biochemical and biophysical research communications.

[62]  A. M. Cook,et al.  Dibenzofuran 4,4a-dioxygenase from Sphingomonas sp. strain RW1: angular dioxygenation by a three-component enzyme system , 1993, Journal of bacteriology.

[63]  B. Ensley,et al.  Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. , 1993, Gene.

[64]  T. O’Halloran,et al.  Overproduction, purification, and characterization of chlorocatechol dioxygenase, a non-heme iron dioxygenase with broad substrate tolerance. , 1991, Biochemistry.

[65]  K. J. Yost,et al.  Microbial oxidation of aromatics in enantiocontrolled synthesis. Part 1. Expedient and general asymmetric synthesis of inositols and carbohydrates via an unusual oxidation of a polarized diene with potassium permanganate , 1994 .

[66]  T. Ohnishi,et al.  The orientation of iron-sulfur clusters and a spin-coupled ubiquinone pair in the mitochondrial membrane. , 1979, Biochimica et biophysica acta.

[67]  V. Subramanian,et al.  Toluene dioxygenase: purification of an iron-sulfur protein by affinity chromatography. , 1979, Biochemical and biophysical research communications.

[68]  R. Cammack,et al.  Primary structure of protein B from Pseudomonas putida, member of a new class of 2Fe‐2S ferredoxins , 1988, FEBS letters.

[69]  M. Yamaguchi,et al.  Subunit structure of oxygenase component in benzoate-1,2-dioxygenase system from Pseudomonas arvilla C-1. , 1982, The Journal of biological chemistry.

[70]  C. C. Correll,et al.  Phthalate dioxygenase reductase: a modular structure for electron transfer from pyridine nucleotides to [2Fe-2S]. , 1992, Science.

[71]  J. Mason,et al.  Benzene dioxygenase from Pseudomonas putida, ML2 (NCIB 12190). , 1990, Methods in enzymology.

[72]  P. Usherwood,et al.  Charge and Field Effects in Biosystems―2 , 1990 .

[73]  B. Ensley,et al.  Naphthalene dioxygenase from Pseudomonas NCIB 9816. , 1990, Methods in enzymology.

[74]  H. Tan,et al.  Cloning and expression of the plasmid-encoded benzene dioxygenase genes from Pseudomonas putida ML2. , 1990, FEMS microbiology letters.

[75]  C. Nakatsu,et al.  Cloning and expression of the transposable chlorobenzoate-3,4-dioxygenase genes of Alcaligenes sp. strain BR60 , 1993, Applied and Environmental Microbiology.

[76]  B. Fox,et al.  Thiolate ligation of the active site Fe2+ of isopenicillin N synthase derives from substrate rather than endogenous cysteine: spectroscopic studies of site-specific Cys----Ser mutated enzymes. , 1992, Biochemistry.

[77]  M. Fukuda,et al.  Identification of the bphA4 gene encoding ferredoxin reductase involved in biphenyl and polychlorinated biphenyl degradation in Pseudomonas sp. strain KKS102 , 1994, Journal of bacteriology.

[78]  D. Gibson,et al.  Toluene degradation by Pseudomonas putida F1: genetic organization of the tod operon , 1988, Applied and environmental microbiology.

[79]  J. Baldwin,et al.  Purification of isopenicillin N synthetase. , 1984, The Biochemical journal.

[80]  F. Mondello Cloning and expression in Escherichia coli of Pseudomonas strain LB400 genes encoding polychlorinated biphenyl degradation , 1989, Journal of bacteriology.

[81]  P. Bertrand,et al.  Comparison of the spin-lattice relaxation properties of the two classes of [2Fe-2S] clusters in proteins. , 1987, Biochimica et biophysica acta.

[82]  S. Benkovic,et al.  Mechanistic studies on phenylalanine hydroxylase from Chromobacterium violaceum. Evidence for the formation of an enzyme-oxygen complex. , 1989, Biochemistry.

[83]  J. Powlowski,et al.  Purification and characterization of the Comamonas testosteroni B-356 biphenyl dioxygenase components , 1995, Journal of bacteriology.

[84]  D. Hall,et al.  The iron complex in spinach ferredoxin. , 1966 .

[85]  R. Cammack,et al.  Coordination of the Rieske-type [2Fe-2S] cluster of the terminal iron-sulfur protein of Pseudomonas putida benzene 1,2-dioxygenase, studied by one- and two-dimensional electron spin-echo envelope modulation spectroscopy. , 1995, Biochemistry.

[86]  C. Fröhner,et al.  Purification and properties of pyrazon dioxygenase from pyrazon-degrading bacteria. , 1977, European journal of biochemistry.

[87]  B. Trumpower,et al.  Mutational analysis of assembly and function of the iron-sulfur protein of the cytochromebc1 complex inSaccharomyces cerevisiae , 1993, Journal of bioenergetics and biomembranes.

[88]  M. Yamaguchi,et al.  Purification and characterization of an oxygenase component in benzoate 1,2-dioxygenase system from Pseudomonas arvilla C-1. , 1980, The Journal of biological chemistry.

[89]  H. Lehväslaiho,et al.  Cloning, nucleotide sequence and characterization of genes encoding naphthalene dioxygenase of Pseudomonas putida strain NCIB9816. , 1988, Gene.

[90]  B. Guigliarelli,et al.  A ligand-field model to describe a new class of 2Fe-2S clusters in proteins and their synthetic analogues , 1985 .

[91]  M. Takagi,et al.  Nucleotide sequencing and characterization of the genes encoding benzene oxidation enzymes of Pseudomonas putida , 1987, Journal of bacteriology.

[92]  S. Fetzner,et al.  Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two-component 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS , 1995, Journal of bacteriology.

[93]  F. Daldal,et al.  Primary structure of the bc1 complex of Rhodopseudomonas capsulata. Nucleotide sequence of the pet operon encoding the Rieske cytochrome b, and cytochrome c1 apoproteins. , 1987, Journal of molecular biology.

[94]  I. C. Gunsalus,et al.  Mössbauer parameters of putidaredoxin and its selenium analog. , 1972, Biochemistry.

[95]  F. Mondello,et al.  Enhanced biodegradation of polychlorinated biphenyls after site-directed mutagenesis of a biphenyl dioxygenase gene , 1993, Applied and environmental microbiology.

[96]  D. Ohlendorf,et al.  Structure of protocatechuate 3,4-dioxygenase from Pseudomonas aeruginosa at 2.15 A resolution. , 1994, Journal of molecular biology.

[97]  W. Sebald,et al.  Nucleotide sequence and transcription of the fbc operon from Rhodopseudomonas sphaeroides. Evaluation of the deduced amino acid sequences of the FeS protein, cytochrome b and cytochrome c1. , 1986, European journal of biochemistry.

[98]  B. Hoffman,et al.  Evidence for N coordination to Fe in the [2Fe-2S] clusters of Thermus Rieske protein and phthalate dioxygenase from Pseudomonas. , 1985, The Journal of biological chemistry.

[99]  L. Wackett,et al.  Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida. , 1988, Biochemistry.

[100]  D. Gibson,et al.  Isolation and preliminary characterization of the subunits of the terminal component of naphthalene dioxygenase from Pseudomonas putida NCIB 9816-4 , 1993, Journal of bacteriology.

[101]  S. Ley,et al.  Microbial oxidation in synthesis: A six step perparation of (+)-pinitol from benzene , 1987 .

[102]  R. Cammack Iron−sulfur clusters in enzymes: themes and variations , 1992 .

[103]  D T Gibson,et al.  Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. , 1968, Biochemistry.

[104]  L. Wackett,et al.  Purification and properties of ferredoxinTOL. A component of toluene dioxygenase from Pseudomonas putida F1. , 1985, The Journal of biological chemistry.

[105]  T. Leisinger,et al.  4-Sulphobenzoate 3,4-dioxygenase. Purification and properties of a desulphonative two-component enzyme system from Comamonas testosteroni T-2. , 1991, The Biochemical journal.

[106]  J. Bolin,et al.  Crystallographic determination of the active site iron and its ligands in soybean lipoxygenase L-1. , 1993, Biochemistry.

[107]  B. Axcell,et al.  Purification and some properties of a soluble benzene-oxidizing system from a strain of Pseudomonas. , 1975, The Biochemical journal.

[108]  K. Young,et al.  Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway , 1993, Journal of bacteriology.

[109]  M. Mather,et al.  Respiratory proteins from extremely thermophilic, aerobic bacteria. , 1986, Biochimica et biophysica acta.

[110]  H. Koga,et al.  Cloning and nucleotide sequences of NADH-putidaredoxin reductase gene (camA) and putidaredoxin gene (camB) involved in cytochrome P-450cam hydroxylase of Pseudomonas putida. , 1989, Journal of biochemistry.

[111]  S. Fetzner,et al.  Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications , 1994, Microbiological reviews.

[112]  F. Mondello,et al.  Nucleotide sequencing and transcriptional mapping of the genes encoding biphenyl dioxygenase, a multicomponent polychlorinated-biphenyl-degrading enzyme in Pseudomonas strain LB400 , 1992, Journal of bacteriology.

[113]  Andrew L. Feig,et al.  Reactions of Non-Heme Iron(II) Centers with Dioxygen in Biology and Chemistry , 1994 .

[114]  L. Que,et al.  4-Hydroxyphenylpyruvate dioxygenase is an iron-tyrosinate protein. , 1986, The Journal of biological chemistry.

[115]  R. Cammack,et al.  An investigation of the iron-sulphur proteins of benzene dioxygenase from Pseudomonas putida by electron-spin-resonance spectroscopy. , 1984, The Biochemical journal.

[116]  D. Gibson,et al.  Oxidation of biphenyl by a multicomponent enzyme system from Pseudomonas sp. strain LB400 , 1993, Journal of bacteriology.

[117]  K. Furukawa,et al.  Gene components responsible for discrete substrate specificity in the metabolism of biphenyl (bph operon) and toluene (tod operon) , 1993, Journal of bacteriology.

[118]  F. Mȕller Chemistry and Biochemistry of Flavoenzymes: Volume I , 1991 .

[119]  J. Mason,et al.  Benzene dioxygenase in Pseudomonas putida. Subunit composition and immuno-cross-reactivity with other aromatic dioxygenases. , 1987, The Biochemical journal.

[120]  T. Tsukihara,et al.  Structure of S. platensis [2Fe-2S] ferredoxin and evolution of chloroplast-type ferredoxins , 1980, Nature.

[121]  S. Fetzner,et al.  2-Oxo-1,2-dihydroquinoline 8-Monooxygenase, a Two-component Enzyme System from Pseudomonas putida 86 (*) , 1995, The Journal of Biological Chemistry.

[122]  K. Gersonde,et al.  An electron-spin-resonance study on the redox-active centers of the 4-methoxybenzoate monooxygenase from Pseudomonas putida. , 1981, European journal of biochemistry.

[123]  P. C. Weber,et al.  Structure and assembly of protocatechuate 3,4-dioxygenase , 1988, Nature.