Non-Decomposable Quantum Dynamical Semigroups and Bound Entangled States

We use open quantum system techniques to construct one-parameter semigroups of positive maps and apply them to study the entanglement properties of a class of 16-dimensional density matrices, representing states of a 4 × 4 bipartite system.

[1]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[2]  P. Horodecki Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.

[3]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[4]  Complete positivity and the neutral kaon system , 1998 .

[5]  F. Benatti,et al.  Quantum dynamical semigroups and non-decomposable positive maps , 2004 .

[6]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[7]  Marco Piani A class of 2^N x 2^N bound entangled states revealed by non-decomposable maps , 2004 .

[8]  Man-Duen Choi,et al.  Positive Linear Maps on C*-Algebras , 1972, Canadian Journal of Mathematics.

[9]  竹崎 正道 Theory of operator algebras , 2002 .

[10]  Complete positivity and dissipative factorized dynamics: some comments , 2003, quant-ph/0310151.

[11]  M. Takesaki,et al.  Analyticity and the Unruh effect: a study of local modular flow , 2024, Journal of High Energy Physics.

[12]  Andrew G. Glen,et al.  APPL , 2001 .

[13]  H. Spohn Kinetic equations from Hamiltonian dynamics: Markovian limits , 1980 .

[14]  Nonpositive evolutions in open system dynamics , 2003, quant-ph/0303027.

[15]  Andrzej Jamiolkowski Errata: On a Stroboscopic Approach to Quantum Tomography of Qudits Governed by Gaussian Semigroups - Open Sys. Information Dyn. 11, 63 (2003) , 2004, Open Syst. Inf. Dyn..

[16]  Man-Duen Choi Positive semidefinite biquadratic forms , 1975 .

[17]  Complete positivity and entangled degrees of freedom , 2002, quant-ph/0205007.

[18]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[19]  M. Horodecki,et al.  Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments , 2002 .

[20]  Karol Zyczkowski,et al.  On Duality between Quantum Maps and Quantum States , 2004, Open Syst. Inf. Dyn..

[21]  G. Alber From the Foundations of Quantum Theory to Quantum Technology — an Introduction , 2001 .

[22]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[23]  E. Størmer DECOMPOSABLE POSITIVE MAPS ON C*-ALGEBRAS , 1982 .

[24]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[25]  G. Vidal,et al.  Operational criterion and constructive checks for the separability of low-rank density matrices , 2000, quant-ph/0002089.

[26]  Roman S. Ingarden A Memorial Note on the 10th Anniversary of OSID , 2003, Open Syst. Inf. Dyn..

[27]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[28]  S. Woronowicz Positive maps of low dimensional matrix algebras , 1976 .

[29]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[30]  M. Horodecki,et al.  Mixed-State Entanglement and Quantum Communication , 2001, quant-ph/0109124.

[31]  Kil-Chan Ha,et al.  Entangled states with positive partial transposes arising from indecomposable positive linear maps , 2003, quant-ph/0305005.

[32]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[33]  M. Piani Class of bound entangled states of N+N qubits revealed by nondecomposable maps , 2006 .

[34]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[35]  Complete positivity and dissipative factorized dynamics , 2002, quant-ph/0208023.