Stereo vision for robotic applications in the presence of non-ideal lighting conditions

Many robotic and machine-vision applications rely on the accurate results of stereo correspondence algorithms. However, difficult environmental conditions, such as differentiations in illumination depending on the viewpoint, heavily affect the stereo algorithms' performance. This work proposes a new illumination-invariant dissimilarity measure in order to substitute the established intensity-based ones. The proposed measure can be adopted by almost any of the existing stereo algorithms, enhancing it with its robust features. The performance of the dissimilarity measure is validated through experimentation with a new adaptive support weight (ASW) stereo correspondence algorithm. Experimental results for a variety of lighting conditions are gathered and compared to those of intensity-based algorithms. The algorithm using the proposed dissimilarity measure outperforms all the other examined algorithms, exhibiting tolerance to illumination differentiations and robust behavior.

[1]  D. Nistér,et al.  Stereo Matching with Color-Weighted Correlation, Hierarchical Belief Propagation, and Occlusion Handling , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Shmuel Peleg,et al.  Fast panoramic stereo matching using cylindrical maximum surfaces , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[3]  Andreas Klaus,et al.  Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[4]  Horst Bischof,et al.  Hierarchical Disparity Estimation with Programmable 3D Hardware , 2004 .

[5]  Rafael Muñoz-Salinas,et al.  People detection and tracking using stereo vision and color , 2007, Image Vis. Comput..

[6]  Rihard Karba,et al.  Wide-angle camera distortions and non-uniform illumination in mobile robot tracking , 2004, Robotics Auton. Syst..

[7]  Sungchul Kang,et al.  Fast correlation-based stereo matching with the reduction of systematic errors , 2005, Pattern Recognit. Lett..

[8]  Don Ray Murray,et al.  Using Real-Time Stereo Vision for Mobile Robot Navigation , 2000, Auton. Robots.

[9]  Rangachar Kasturi,et al.  Machine vision , 1995 .

[10]  Gérard G. Medioni,et al.  Stereo using monocular cues within the tensor voting framework , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  In-So Kweon,et al.  Adaptive Support-Weight Approach for Correspondence Search , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Peter Corke,et al.  The machine vision toolbox , 2005 .

[13]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  P. J. Narayanan,et al.  CUDA cuts: Fast graph cuts on the GPU , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[15]  Peter I. Corke The Machine Vision Toolbox: a MATLAB toolbox for vision and vision-based control , 2005, IEEE Robotics & Automation Magazine.

[16]  D Marr,et al.  Cooperative computation of stereo disparity. , 1976, Science.

[17]  James J. Little,et al.  Autonomous vision-based robotic exploration and mapping using hybrid maps and particle filters , 2009, Image Vis. Comput..

[18]  Qican Zhang,et al.  Local stereo matching with adaptive support-weight, rank transform and disparity calibration , 2008, Pattern Recognit. Lett..

[19]  Luigi di Stefano,et al.  A fast area-based stereo matching algorithm , 2004, Image Vis. Comput..

[20]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[21]  In-So Kweon,et al.  Stereo Matching with Symmetric Cost Functions , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[22]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[23]  Yiannis Aloimonos,et al.  Robust Contrast Invariant Stereo Correspondence , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[24]  Cheng Lei,et al.  Region-Tree Based Stereo Using Dynamic Programming Optimization , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[25]  Andrew Hogue,et al.  Underwater environment reconstruction using stereo and inertial data , 2007, 2007 IEEE International Conference on Systems, Man and Cybernetics.

[26]  Changming Sun,et al.  Iterated dynamic programming and quadtree subregioning for fast stereo matching , 2008, Image Vis. Comput..

[27]  Don Ray Murray,et al.  Stereo vision based mapping and navigation for mobile robots , 1997, Proceedings of International Conference on Robotics and Automation.

[28]  Antonios Gasteratos,et al.  Review of Stereo Vision Algorithms: From Software to Hardware , 2008 .

[29]  Richard Szeliski,et al.  High-accuracy stereo depth maps using structured light , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[30]  Zia-ur Rahman,et al.  A multiscale retinex for bridging the gap between color images and the human observation of scenes , 1997, IEEE Trans. Image Process..

[31]  Horst Bischof,et al.  Hierarchical Disparity Estimation with Programmable Graphics Hardware , 2004, WSCG.

[32]  In-So Kweon,et al.  Correspondence Search in the Presence of Specular Highlights Using Specular-Free Two-Band Images , 2006, ACCV.

[33]  Yiannis Aloimonos,et al.  A Roadmap to the Integration of Early Visual Modules , 2007, International Journal of Computer Vision.

[34]  Antonios Gasteratos,et al.  Fast centre- surround contrast modification , 2008 .

[35]  Yiannis Aloimonos,et al.  Shape and the Stereo Correspondence Problem , 2005, International Journal of Computer Vision.

[36]  Giuseppe Marino,et al.  Neural adaptive stereo matching , 2004, Pattern Recognit. Lett..

[37]  Jan-Michael Frahm,et al.  Detailed Real-Time Urban 3D Reconstruction from Video , 2007, International Journal of Computer Vision.