Synchronization of a class of coupled chaotic delayed systems with parameter mismatch.

In this paper, we study the effect of parameter mismatch on the synchronization of a class of coupled chaotic systems with time delays. In the presence of parameter mismatch, the delayed coupled chaotic systems are investigated in terms of the quasisynchronization. A simple and yet easily applicable criterion for quasisynchronization of a large class of coupled chaotic systems with delays is derived based on the Lyapunov stability theory. As an example, the Ikeda oscillator is simulated, thereby validating the theoretical result in this paper.

[1]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[2]  K. Ikeda,et al.  Study of a high-dimensional chaotic attractor , 1986 .

[3]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[4]  M. Gilli Strange attractors in delayed cellular neural networks , 1993 .

[5]  Carroll,et al.  Synchronous chaos in coupled oscillator systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Alexander L. Fradkov,et al.  Speed gradient control of chaotic continuous-time systems , 1996 .

[7]  J. Suykens,et al.  Robust nonlinear H/sub /spl infin// synchronization of chaotic Lur'e systems , 1997 .

[8]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[9]  Yang Tao,et al.  Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication , 1997 .

[10]  M. Hasler,et al.  Effect of parameter mismatch on the mechanism of chaos synchronization loss in coupled systems , 1998 .

[11]  Kazuo Tanaka,et al.  Fuzzy control of chaotic systems using LMIs: regulation, synchronization and chaos model following , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[12]  Jean Bragard,et al.  Synchronization in Nonidentical Extended Systems , 1999 .

[13]  J. Suykens,et al.  Robust synthesis for master-slave synchronization of Lur'e systems , 1999 .

[14]  Guanrong Chen,et al.  Switching manifold approach to chaos synchronization , 1999 .

[15]  H. Agiza,et al.  Synchronization of Rossler and Chen chaotic dynamical systems using active control , 2001, Physics Letters A.

[16]  C. Masoller Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback. , 2001, Physical review letters.

[17]  Tao Yang,et al.  In: Impulsive control theory , 2001 .

[18]  Sang-Yoon Kim,et al.  Characterization of the parameter-mismatching effect on the loss of chaos synchronization. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  K A Shore,et al.  Parameter mismatches and perfect anticipating synchronization in bidirectionally coupled external cavity laser diodes. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Hongtao Lu Chaotic attractors in delayed neural networks , 2002 .

[21]  K. Shore,et al.  Lag times and parameter mismatches in synchronization of unidirectionally coupled chaotic external cavity semiconductor lasers. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Guo-Ping Jiang,et al.  A New Criterion for Chaos Synchronization Using Linear State Feedback Control , 2003, Int. J. Bifurc. Chaos.

[23]  X. Xu,et al.  Impulsive control in continuous and discrete-continuous systems [Book Reviews] , 2003, IEEE Transactions on Automatic Control.

[24]  Laurent Larger,et al.  Effect of parameter mismatch on the synchronization of chaotic semiconductor lasers with electro-optical feedback. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Henry Leung,et al.  Time-varying synchronization of chaotic systems in the presence of system mismatch. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  T. Govindan,et al.  Parameter space reduction criteria to search for synchronization domains in coupled discrete systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Xiaofeng Liao,et al.  Impulsive synchronization of chaotic systems. , 2005, Chaos.

[28]  E. M. Shahverdiev,et al.  Parameter mismatches, variable delay times and synchronization in time-delayed systems , 2005 .

[29]  Guanrong Chen,et al.  Chaos quasisynchronization induced by impulses with parameter mismatches. , 2006, Chaos.