Inorganic Double Helices in Semiconducting SnIP

SnIP is the first atomic-scale double helical semiconductor featuring a 1.86 eV bandgap, high structural and mechanical flexibility, and reasonable thermal stability up to 600 K. It is accessible on a gram scale and consists of a racemic mixture of right- and left-handed double helices composed by [SnI] and [P] helices. SnIP nanorods <20 nm in diameter can be accessed mechanically and chemically within minutes.

[1]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[2]  R. Jin,et al.  Gold tetrahedra coil up: Kekulé-like and double helical superstructures , 2015, Science Advances.

[3]  R. Dronskowski,et al.  Van der Waals interactions in selected allotropes of phosphorus , 2015 .

[4]  Gautam Gupta,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[5]  A. Pfitzner,et al.  Die erweiterte Stabilitätsreihe der Phosphorallotrope , 2014 .

[6]  R. Dronskowski,et al.  The extended stability range of phosphorus allotropes. , 2014, Angewandte Chemie.

[7]  R. Orlando,et al.  CRYSTAL14: A program for the ab initio investigation of crystalline solids , 2014 .

[8]  Peng Yin,et al.  Casting inorganic structures with DNA molds , 2014, Science.

[9]  Petr Král,et al.  Self-assembly of magnetite nanocubes into helical superstructures , 2014, Science.

[10]  Qiang Zhang,et al.  Emerging double helical nanostructures. , 2014, Nanoscale.

[11]  T. Nilges,et al.  Access and in situ growth of phosphorene-precursor black phosphorus , 2014, 1406.7275.

[12]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[13]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[14]  D. Tománek,et al.  Formation and properties of selenium double-helices inside double-wall carbon nanotubes: experiment and theory. , 2013, ACS nano.

[15]  U. Muller Symmetry Relationships between Crystal Structures: Applications of Crystallographic Group Theory in Crystal Chemistry , 2013 .

[16]  F. Schappacher,et al.  Effect of In–Sn Ordering on Semiconducting Properties in InSnCo3S2 – X‐ray, 119Sn Mößbauer Spectroscopy, and DFT Studies , 2013 .

[17]  P. Schmidt,et al.  The use of the High-Temperature Gas-Balance (HTGB) for thermogravimetric measurements , 2012, Journal of Thermal Analysis and Calorimetry.

[18]  Edward H. Sargent,et al.  Materials interface engineering for solution-processed photovoltaics , 2012, Nature.

[19]  A. J. Morris,et al.  Inorganic double-helix structures of unusually simple lithium-phosphorus species. , 2012, Angewandte Chemie.

[20]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[21]  R. Weihrich,et al.  Synthese und Identifizierung metastabiler Verbindungen: schwarzes Arsen – Fiktion oder Wirklichkeit? , 2012 .

[22]  P. Schmidt,et al.  Synthesis and identification of metastable compounds: black arsenic--science or fiction? , 2012, Angewandte Chemie.

[23]  E. Ahmed,et al.  Homo- and heteroatomic polycations of groups 15 and 16. Recent advances in synthesis and isolation using room temperature ionic liquids , 2011 .

[24]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[25]  L. Kienle,et al.  Precession Electron Diffraction – a versatile tool for the characterization of Phase Change Materials , 2011 .

[26]  Mikko Linnolahti,et al.  Structural principles of semiconducting Group 14 clathrate frameworks. , 2011, Inorganic chemistry.

[27]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[28]  Jiaqi Huang,et al.  Carbon-nanotube-array double helices. , 2010, Angewandte Chemie.

[29]  H. Morito,et al.  Double-helical silicon microtubes. , 2010, Angewandte Chemie.

[30]  Kai Sun,et al.  Light-Controlled Self-Assembly of Semiconductor Nanoparticles into Twisted Ribbons , 2010, Science.

[31]  M. Brett,et al.  Morphology Control of Nanotube Arrays , 2009 .

[32]  M. Weiss,et al.  Crystallographic analysis of a sex-specific enhancer element: sequence-dependent DNA structure, hydration, and dynamics. , 2009, Journal of molecular biology.

[33]  Hao Yan,et al.  Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles , 2009, Science.

[34]  Roberto Dovesi,et al.  Ab initio simulation of the IR spectra of pyrope, grossular, and andradite , 2008, J. Comput. Chem..

[35]  Gervais Chapuis,et al.  SUPERFLIP– a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions , 2007 .

[36]  P. Schmidt,et al.  Au3SnP7@black phosphorus: an easy access to black phosphorus. , 2007, Inorganic chemistry.

[37]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[38]  Zhiyong Tang,et al.  Self-Assembly of CdTe Nanocrystals into Free-Floating Sheets , 2006, Science.

[39]  K. Doll,et al.  Analytical Hartree–Fock gradients with respect to the cell parameter: systems periodic in one and two dimensions , 2005, physics/0512172.

[40]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[41]  G. Hoatson,et al.  Modelling one‐ and two‐dimensional solid‐state NMR spectra , 2002 .

[42]  Pfitzner The use of copper(I) halides as a preparative tool , 2000, Chemistry.

[43]  K. Kovnir,et al.  First Tin Pnictide Halides Sn24P19.3I8 and Sn24As19.3I8: Synthesis and the Clathrate-I Type of the Crystal Structure , 1999 .

[44]  A Kokalj,et al.  XCrySDen--a new program for displaying crystalline structures and electron densities. , 1999, Journal of molecular graphics & modelling.

[45]  K. Doll,et al.  GROUND-STATE PROPERTIES OF HEAVY ALKALI HALIDES , 1998, cond-mat/9801031.

[46]  Paul A. Midgley,et al.  Double conical beam-rocking system for measurement of integrated electron diffraction intensities , 1994 .

[47]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[48]  R. Haushalter,et al.  An Inorganic Double Helix: Hydrothermal Synthesis, Structure, and Magnetism of Chiral [(CH3)2NH2]K4[V10O10(H2O)2(OH)4(PO4)7]�4H2O , 1993, Science.

[49]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[50]  R. Griffin,et al.  Chemical shift correlation spectroscopy in rotating solids: Radio frequency‐driven dipolar recoupling and longitudinal exchange , 1992 .

[51]  T. Hahn,et al.  International Tables for Crystallography: Volume A: Space-Group Symmetry , 1987 .

[52]  T. Fukuda,et al.  Electrical Resistivity of Undoped GaAs Single Crystals Grown by Magnetic Field Applied LEC Technique , 1983 .

[53]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.

[54]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[55]  E. Howells,et al.  Structures of Molecules and Crystals of Fluoro-Carbons , 1954, Nature.

[56]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[57]  Y. Suchorski,et al.  Lithium field desorption microscope: a new tool for surface investigations , 1994 .

[58]  Pierre Stadelmann,et al.  EMS-A software package for electron diffraction analysis and HREM image simulation in materials science , 1987 .

[59]  W. Hönle,et al.  Zur Struktur von LiP und KSb , 1981 .

[60]  J. Tauc,et al.  Optical properties and electronic structure of amorphous Ge and Si , 1968 .

[61]  P. Kubelka Ein Beitrag zur Optik der Farban striche , 1931 .