The steam-assisted gravity drainage (SAGD) process is one of the key in situ recovery processes being used today to recover heavy oil and bitumen. In this process, steam injected through a horizontal well, flows convectively towards the outer edges of a depletion chamber. At the edges of the depletion chamber, the steam releases its latent heat to the cool oil sand and raises its temperature. The heated oil is mobile and flows under the action of gravity to a horizontal production well located several metres below the injection well. It remains unclear what is the exact mechanism of chamber growth. Some have suggested that in addition to heat conduction, it is by convective steam flow in the form of pointed fingers at the edges of the chamber which penetrate the oil sand. In theory published by Butler [Butler, J. Can. Petroleum Technol. 1987;26(3):70–75], it was determined that the fingers can be as long as 6 m for Athabasca bitumen reservoirs. In this research, a new theory is derived and provides predictions of the rise rate which compare better to estimates derived from field thermocouple data and physical model experimental observations than values obtained from Butler's theory. The results suggest that in the absence of mobile water, heat conduction rather than steam fingers at the chamber edge is the dominant heat transfer mechanism.
Le procede de drainage par gravite assiste a la vapeur (SAGD) est fondamental dans les procedes de recuperation in situ qui sont utilises aujourd'hui pour la recuperation de l'huile lourde et du bitume. Dans ce procede, la vapeur injectee dans un puits horizontal s'ecoule par convection vers les bords exterieurs d'une chambre de depletion. Sur les bords de la chambre de depletion, la vapeur libere sa chaleur latente au sable bitumineux froid et eleve sa temperature. L'huile chauffee devient mobile et s'ecoule sous l'action de la gravite vers un puits de production horizontal situe plusieurs metres sous le puits d'injection. On ne connait pas exactement le mecanisme de croissance de la chambre. Certains suggerent qu'en plus de la conduction de chaleur, le mecanisme de penetration dans le sable bitumineux est base sur la convection de la vapeur par digitation a la peripherie de la chambre. Dans un travail theorique publie par Butler [Butler, J. Can. Petroleum Technol. 1987;26(3):70–75], il a ete determine que les doigts peuvent atteindre une longueur de 6 m pour les reservoirs de bitume d'Athabasca. Dans cette recherche, une nouvelle theorie est etablie et fournit des predictions de la cinetique de croissance qui se comparent mieux aux estimations calculees a partir de donnees de thermocouple prises dans le reservoir et des observations experimentales de modeles physiques qu'aux valeurs obtenues avec la theorie de Butler. Les resultats suggerent qu'en l'absence d'eau mobile, c'est la conduction de chaleur plutot que les doigts de vapeur en bordure de chambre qui est le mecanisme de transfert de chaleur dominant.
[1]
S. M. Farouq Ali,et al.
Experimental modeling of the SAGD process: Enhancing SAGD performance with periodic stimulation of the horizontal producer
,
2001
.
[2]
P. J. Closmann,et al.
Temperature Observations and Steam-Zone Rise in the Vicinity of a Steam-Heated Fracture
,
1983
.
[3]
P. Collins.
Geomechanical Effects on the SAGD Process
,
2007
.
[4]
Roger M. Butler,et al.
Rise Of Interfering Steam Chambers
,
1987
.
[5]
G. Birrell.
Heat transfer ahead of a SAGD steam chamber: A study of thermocouple data from phase B of the Underground Test Facility (Dover Project)
,
2001
.
[6]
S. Gittins,et al.
Effect of Solvent Sequencing and Other Enhancements on Solvent Aided Process
,
2006
.
[7]
Y. Ito,et al.
Steam Fingering Phenomenon During SAGD Process
,
2005
.
[8]
Yoshiaki Ito.
The Introduction of the Microchanneling Phenomenon to Cyclic Steam Stimulation and Its Application to the Numerical Simulator (Sand Deformation Concept)
,
1984
.
[9]
Ian D. Gates,et al.
Optimization of Steam-Assisted Gravity Drainage in McMurray Reservoir
,
2005
.
[10]
N. Yazawa,et al.
Microscopic visualization with high resolution optical-fiber scope at steam chamber Interface on initial stage of SAGD process
,
2002
.
[11]
M. Ichikawa,et al.
The Effect of Operating Pressure on the Growth of the Steam Chamber Detected at the Hangingstone SAGD Project
,
2002
.
[12]
K. A. Miller,et al.
Successful Conversion of the Pikes Peak Viscous-Oil Cyclic Steam Project to Steamdrive
,
1991
.
[13]
T. Hirata,et al.
The Growth of the Steam Chamber During the Early Period of the UTF Phase B and Hangingstone Phase I Projects
,
2001
.
[14]
G. E. Birrell,et al.
A Study of the Influence of Reservoir Architecture on SAGD Steam Chamber Development at the Underground Test Facility, Northeastern Alberta, Canada, Using a Graphical Analysis of Temperature Profiles
,
2000
.
[15]
Y. Ito,et al.
Numerical Simulation of the SAGD Process In the Hangingstone Oil Sands Reservoir
,
1999
.