Identication of fuzzy function via interval analysis

A number of techniques have been introduced to construct fuzzy models from measured data. One of the most common is the use of mathematical parametric models. In this paper, a new approach based on interval analysis is proposed to compute guaranteed estimates of suitable characteristics of the set of all values of the fuzzy parameter vector such that the error between experimental data and the model outputs belongs to some predefined feasible set. Subpavings consisting of boxes with nonzero width are used to encompass all the acceptable values of the parameter vector. The problem of estimating the parameters of the model is viewed as one of set inversion, which is solved in an approximate but guaranteed way with the tools of interval analysis. The estimation task is formulated here as a constrained optimization problem. Our approach emphasizes the use of interval mathematics for fuzzy representation, which is especially suited to nonlinear models, a situation where most available methods fail to provide any guarantee on the results. An algorithm is proposed, which makes it possible to obtain all fuzzy parameter vectors that are consistent with the data. Properties of this algorithm are established and illustrated on a simple example.

[1]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[2]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[3]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[4]  M. Sugeno,et al.  Structure identification of fuzzy model , 1988 .

[5]  Gustavo Belforte,et al.  Parameter estimation algorithms for a set-membership description of uncertainty , 1990, Autom..

[6]  Erwin Kreyszig,et al.  Differential geometry , 1991 .

[7]  Didier Dubois,et al.  Random sets and fuzzy interval analysis , 1991 .

[8]  Jyh-Shing Roger Jang,et al.  Fuzzy Modeling Using Generalized Neural Networks and Kalman Filter Algorithm , 1991, AAAI.

[9]  Jerry M. Mendel,et al.  Back-propagation fuzzy system as nonlinear dynamic system identifiers , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[10]  Bart Kosko,et al.  Fuzzy function approximation , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[11]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[12]  Eric Walter,et al.  Guaranteed nonlinear parameter estimation from bounded-error data via interval analysis , 1993 .

[13]  Dimitar Filev,et al.  Unified structure and parameter identification of fuzzy models , 1993, IEEE Trans. Syst. Man Cybern..

[14]  Kevin D. Reilly,et al.  Genetic learning algorithms for fuzzy neural nets , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[15]  L. Jaulin,et al.  Solution globale et garantie de problemes ensemblistes; applications a l'estimation non lineaire et a la commande robuste , 1994 .

[16]  Bart Kosko,et al.  Fuzzy Systems as Universal Approximators , 1994, IEEE Trans. Computers.

[17]  Juan Luis Castro,et al.  Fuzzy logic controllers are universal approximators , 1995, IEEE Trans. Syst. Man Cybern..

[18]  Bart Kosko,et al.  Fuzzy function approximation with ellipsoidal rules , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[19]  Joos Vandewalle,et al.  Fuzzy systems as universal approximators : Constructive theory , 1997 .

[20]  D. Dubois,et al.  Fundamentals of fuzzy sets , 2000 .

[21]  Bilal M. Ayyub,et al.  Fuzzy regression methods - a comparative assessment , 2001, Fuzzy Sets Syst..

[22]  H. Maaref,et al.  Guaranteed fuzzy function approximation using interval analysis , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[23]  Bart Kosko Fuzzy thinking , 2018, New Scientist.