Stable Cell-Centered Finite Volume Discretization for Biot Equations
暂无分享,去创建一个
[1] T. F. Russell,et al. Finite element and finite difference methods for continuous flows in porous media. , 1800 .
[2] Roland Masson,et al. Convergence of Finite Volume MPFA O type Schemes for Heterogeneous Anisotropic Diffusion Problems on General Meshes , 2010 .
[3] Yuanle Ma,et al. Computational methods for multiphase flows in porous media , 2007, Math. Comput..
[4] Hrvoje Jasak,et al. Application of the finite volume method and unstructured meshes to linear elasticity , 2000 .
[5] M. Biot. General Theory of Three‐Dimensional Consolidation , 1941 .
[6] Susanne C. Brenner,et al. Korn's inequalities for piecewise H1 vector fields , 2003, Math. Comput..
[7] Jan M. Nordbotten. Convergence of a Cell-Centered Finite Volume Discretization for Linear Elasticity , 2015, SIAM J. Numer. Anal..
[8] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[9] Ivar Aavatsmark,et al. Monotonicity of control volume methods , 2007, Numerische Mathematik.
[10] Todd Arbogast,et al. Analysis of a Two-Scale, Locally Conservative Subgrid Upscaling for Elliptic Problems , 2004, SIAM J. Numer. Anal..
[11] R. Temam,et al. Mathematical Modeling in Continuum Mechanics: Index , 2000 .
[12] J. C. Rice,et al. On numerically accurate finite element solutions in the fully plastic range , 1990 .
[13] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[14] I. Aavatsmark,et al. An Introduction to Multipoint Flux Approximations for Quadrilateral Grids , 2002 .
[15] Mary F. Wheeler,et al. A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra , 2011, Numerische Mathematik.
[16] Mary F. Wheeler,et al. A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: the discrete-in-time case , 2007 .
[17] J. Nordbotten,et al. On the relationship between the multiscale finite-volume method and domain decomposition preconditioners , 2008 .
[18] Ivar Aavatsmark,et al. Discretization on Non-Orthogonal, Quadrilateral Grids for Inhomogeneous, Anisotropic Media , 1996 .
[19] M. Kubik. The Future of Geothermal Energy , 2006 .
[20] Ragnar Winther,et al. Robust convergence of multi point flux approximation on rough grids , 2006, Numerische Mathematik.
[21] Douglas N. Arnold,et al. Mixed finite elements for elasticity , 2002, Numerische Mathematik.
[22] Mary F. Wheeler,et al. A Multipoint Flux Mixed Finite Element Method , 2006, SIAM J. Numer. Anal..
[23] Jan Martin Nordbotten. Finite volume hydromechanical simulation in porous media , 2014, Water resources research.
[24] B. Schrefler,et al. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media , 1998 .
[25] L. Franca,et al. Error analysis of some Galerkin least squares methods for the elasticity equations , 1991 .
[26] Jan M. Nordbotten,et al. Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation , 2011 .
[27] Jan M. Nordbotten,et al. Adaptive Variational Multiscale Methods for Multiphase Flow in Porous Media , 2009, Multiscale Model. Simul..
[28] Long Chen. FINITE VOLUME METHODS , 2011 .
[29] J. Nordbotten. Cell‐centered finite volume discretizations for deformable porous media , 2014 .
[30] G. T. Eigestad,et al. On the convergence of the multi-point flux approximation O-method: Numerical experiments for discontinuous permeability , 2005 .
[31] Mary F. Wheeler,et al. Coupling multipoint flux mixed finite element methodswith continuous Galerkin methods for poroelasticity , 2013, Computational Geosciences.
[32] Pieter A. Vermeer,et al. An accuracy condition for consolidation by finite elements , 1981 .
[33] Cornelis W. Oosterlee,et al. A stabilized difference scheme for deformable porous media and its numerical resolution by multigrid methods , 2008 .
[34] R. A. Klausen,et al. CONVERGENCE OF MULTI-POINT FLUX APPROXIMATIONS ON GENERAL GRIDS AND MEDIA , 2012 .
[35] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[36] Simon Lemaire. Discrétisations non-conformes d'un modèle poromécanique sur maillages généraux , 2013 .
[37] D. Vasco,et al. Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria , 2010 .
[38] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[39] Roland Masson,et al. Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes , 2008 .
[40] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[41] Annalisa Quaini,et al. Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction , 2009, J. Comput. Phys..
[42] Terry Wayne Stone,et al. Fully Coupled Geomechanics in a Commercial Reservoir Simulator , 2000 .
[43] Joachim Berdal Haga,et al. On the causes of pressure oscillations in low‐permeable and low‐compressible porous media , 2012 .
[44] I. Babuska. Error-bounds for finite element method , 1971 .
[45] Ruben Juanes,et al. Stability, Accuracy, and Efficiency of Sequential Methods for Coupled Flow and Geomechanics , 2011 .
[46] Robert Eymard,et al. H-convergence and numerical schemes for elliptic equations SIAM Journal on Numerical Analysis , 2000 .
[47] Subir K. Sanyal,et al. FUTURE OF GEOTHERMAL ENERGY , 2010 .
[48] F. Gaspar,et al. Staggered grid discretizations for the quasi-static Biot's consolidation problem , 2006 .
[49] J. Oden,et al. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .
[50] G. Tallini,et al. ON THE EXISTENCE OF , 1996 .
[51] P. Hansbo,et al. CHALMERS FINITE ELEMENT CENTER Preprint 2000-06 Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche ’ s Method , 2007 .