Stable Cell-Centered Finite Volume Discretization for Biot Equations

In this paper we discuss a new discretization for the Biot equations. The discretization treats the coupled system of deformation and flow directly, as opposed to combining discretizations for the two separate subproblems. The coupled discretization has the following key properties, the combination of which is novel: (1) The variables for the pressure and displacement are co-located and are as sparse as possible (e.g., one displacement vector and one scalar pressure per cell center). (2) With locally computable restrictions on grid types, the discretization is stable with respect to the limits of incompressible fluid and small time-steps. (3) No artificial stabilization term has been introduced. Furthermore, due to the finite volume structure embedded in the discretization, explicit local expressions for both momentum-balancing forces and mass-conservative fluid fluxes are available. We prove stability of the proposed method with respect to all relevant limits. Together with consistency, this proves conve...

[1]  T. F. Russell,et al.  Finite element and finite difference methods for continuous flows in porous media. , 1800 .

[2]  Roland Masson,et al.  Convergence of Finite Volume MPFA O type Schemes for Heterogeneous Anisotropic Diffusion Problems on General Meshes , 2010 .

[3]  Yuanle Ma,et al.  Computational methods for multiphase flows in porous media , 2007, Math. Comput..

[4]  Hrvoje Jasak,et al.  Application of the finite volume method and unstructured meshes to linear elasticity , 2000 .

[5]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[6]  Susanne C. Brenner,et al.  Korn's inequalities for piecewise H1 vector fields , 2003, Math. Comput..

[7]  Jan M. Nordbotten Convergence of a Cell-Centered Finite Volume Discretization for Linear Elasticity , 2015, SIAM J. Numer. Anal..

[8]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[9]  Ivar Aavatsmark,et al.  Monotonicity of control volume methods , 2007, Numerische Mathematik.

[10]  Todd Arbogast,et al.  Analysis of a Two-Scale, Locally Conservative Subgrid Upscaling for Elliptic Problems , 2004, SIAM J. Numer. Anal..

[11]  R. Temam,et al.  Mathematical Modeling in Continuum Mechanics: Index , 2000 .

[12]  J. C. Rice,et al.  On numerically accurate finite element solutions in the fully plastic range , 1990 .

[13]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[14]  I. Aavatsmark,et al.  An Introduction to Multipoint Flux Approximations for Quadrilateral Grids , 2002 .

[15]  Mary F. Wheeler,et al.  A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra , 2011, Numerische Mathematik.

[16]  Mary F. Wheeler,et al.  A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: the discrete-in-time case , 2007 .

[17]  J. Nordbotten,et al.  On the relationship between the multiscale finite-volume method and domain decomposition preconditioners , 2008 .

[18]  Ivar Aavatsmark,et al.  Discretization on Non-Orthogonal, Quadrilateral Grids for Inhomogeneous, Anisotropic Media , 1996 .

[19]  M. Kubik The Future of Geothermal Energy , 2006 .

[20]  Ragnar Winther,et al.  Robust convergence of multi point flux approximation on rough grids , 2006, Numerische Mathematik.

[21]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[22]  Mary F. Wheeler,et al.  A Multipoint Flux Mixed Finite Element Method , 2006, SIAM J. Numer. Anal..

[23]  Jan Martin Nordbotten Finite volume hydromechanical simulation in porous media , 2014, Water resources research.

[24]  B. Schrefler,et al.  The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media , 1998 .

[25]  L. Franca,et al.  Error analysis of some Galerkin least squares methods for the elasticity equations , 1991 .

[26]  Jan M. Nordbotten,et al.  Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation , 2011 .

[27]  Jan M. Nordbotten,et al.  Adaptive Variational Multiscale Methods for Multiphase Flow in Porous Media , 2009, Multiscale Model. Simul..

[28]  Long Chen FINITE VOLUME METHODS , 2011 .

[29]  J. Nordbotten Cell‐centered finite volume discretizations for deformable porous media , 2014 .

[30]  G. T. Eigestad,et al.  On the convergence of the multi-point flux approximation O-method: Numerical experiments for discontinuous permeability , 2005 .

[31]  Mary F. Wheeler,et al.  Coupling multipoint flux mixed finite element methodswith continuous Galerkin methods for poroelasticity , 2013, Computational Geosciences.

[32]  Pieter A. Vermeer,et al.  An accuracy condition for consolidation by finite elements , 1981 .

[33]  Cornelis W. Oosterlee,et al.  A stabilized difference scheme for deformable porous media and its numerical resolution by multigrid methods , 2008 .

[34]  R. A. Klausen,et al.  CONVERGENCE OF MULTI-POINT FLUX APPROXIMATIONS ON GENERAL GRIDS AND MEDIA , 2012 .

[35]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[36]  Simon Lemaire Discrétisations non-conformes d'un modèle poromécanique sur maillages généraux , 2013 .

[37]  D. Vasco,et al.  Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria , 2010 .

[38]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[39]  Roland Masson,et al.  Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes , 2008 .

[40]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[41]  Annalisa Quaini,et al.  Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction , 2009, J. Comput. Phys..

[42]  Terry Wayne Stone,et al.  Fully Coupled Geomechanics in a Commercial Reservoir Simulator , 2000 .

[43]  Joachim Berdal Haga,et al.  On the causes of pressure oscillations in low‐permeable and low‐compressible porous media , 2012 .

[44]  I. Babuska Error-bounds for finite element method , 1971 .

[45]  Ruben Juanes,et al.  Stability, Accuracy, and Efficiency of Sequential Methods for Coupled Flow and Geomechanics , 2011 .

[46]  Robert Eymard,et al.  H-convergence and numerical schemes for elliptic equations SIAM Journal on Numerical Analysis , 2000 .

[47]  Subir K. Sanyal,et al.  FUTURE OF GEOTHERMAL ENERGY , 2010 .

[48]  F. Gaspar,et al.  Staggered grid discretizations for the quasi-static Biot's consolidation problem , 2006 .

[49]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[50]  G. Tallini,et al.  ON THE EXISTENCE OF , 1996 .

[51]  P. Hansbo,et al.  CHALMERS FINITE ELEMENT CENTER Preprint 2000-06 Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche ’ s Method , 2007 .