A Scaling Algorithm to Equilibrate Both Rows and Columns Norms in Matrices 1

We present an iterative procedure which asymptotically scales the infinity norm of both rows and columns in a matrix to 1. This scaling strategy exhibits some optimality properties and additionally preserves symmetry. The algorithm also shows fast linear convergence with an asymptotic rate of 1=2. We discuss possible extensions of such an algorithm when considering the one-norm or the two norm of the rows and columns of the given matrix, and give the proof of its convergence when the matrix pattern satisfies some common properties.

[1]  F. L. Bauer Optimally scaled matrices , 1963 .

[2]  Richard Sinkhorn A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .

[3]  L. Mirsky,et al.  The Distribution of Positive Elements in Doubly‐Stochastic Matrices , 1965 .

[4]  R. Brualdi,et al.  The diagonal equivalence of a nonnegative matrix to a stochastic matrix , 1966 .

[5]  Richard Sinkhorn,et al.  Concerning nonnegative matrices and doubly stochastic matrices , 1967 .

[6]  Richard Sinkhorn Diagonal equivalence to matrices with prescribed row and column sums. II , 1967 .

[7]  Richard Sinkhorn,et al.  Problems involving diagonal products in nonnegative matrices , 1969 .

[8]  F. L. Bauer Remarks on optimally scaled matrices , 1969 .

[9]  A. Sluis Condition numbers and equilibration of matrices , 1969 .

[10]  James R. Bunch,et al.  Equilibration of Symmetric Matrices in the Max-Norm , 1971, JACM.

[11]  J. Reid,et al.  On the Automatic Scaling of Matrices for Gaussian Elimination , 1972 .

[12]  B. Parlett,et al.  Methods for Scaling to Doubly Stochastic Form , 1982 .

[13]  R. Bapat D1AD2 theorems for multidimensional matrices , 1982 .

[14]  T. Raghavan,et al.  On pairs of multidimensional matrices , 1984 .

[15]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[16]  J. Lorenz,et al.  On the scaling of multidimensional matrices , 1989 .

[17]  Stavros A. Zenios,et al.  A Comparative Study of Algorithms for Matrix Balancing , 1990, Oper. Res..

[18]  George W. Soules The rate of convergence of Sinkhorn balancing , 1991 .

[19]  Eva Achilles,et al.  Implications of convergence rates in Sinkhorn balancing , 1993 .

[20]  Michael H. Schneider,et al.  Scaling Matrices to Prescribed Row and Column Maxima , 1994, SIAM J. Matrix Anal. Appl..

[21]  Alberto Borobia,et al.  Matrix scaling: A geometric proof of Sinkhorn's theorem , 1998 .

[22]  Iain S. Duff,et al.  On Algorithms For Permuting Large Entries to the Diagonal of a Sparse Matrix , 2000, SIAM J. Matrix Anal. Appl..