A Scaling Algorithm to Equilibrate Both Rows and Columns Norms in Matrices 1
暂无分享,去创建一个
[1] F. L. Bauer. Optimally scaled matrices , 1963 .
[2] Richard Sinkhorn. A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .
[3] L. Mirsky,et al. The Distribution of Positive Elements in Doubly‐Stochastic Matrices , 1965 .
[4] R. Brualdi,et al. The diagonal equivalence of a nonnegative matrix to a stochastic matrix , 1966 .
[5] Richard Sinkhorn,et al. Concerning nonnegative matrices and doubly stochastic matrices , 1967 .
[6] Richard Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums. II , 1967 .
[7] Richard Sinkhorn,et al. Problems involving diagonal products in nonnegative matrices , 1969 .
[8] F. L. Bauer. Remarks on optimally scaled matrices , 1969 .
[9] A. Sluis. Condition numbers and equilibration of matrices , 1969 .
[10] James R. Bunch,et al. Equilibration of Symmetric Matrices in the Max-Norm , 1971, JACM.
[11] J. Reid,et al. On the Automatic Scaling of Matrices for Gaussian Elimination , 1972 .
[12] B. Parlett,et al. Methods for Scaling to Doubly Stochastic Form , 1982 .
[13] R. Bapat. D1AD2 theorems for multidimensional matrices , 1982 .
[14] T. Raghavan,et al. On pairs of multidimensional matrices , 1984 .
[15] I. Duff,et al. Direct Methods for Sparse Matrices , 1987 .
[16] J. Lorenz,et al. On the scaling of multidimensional matrices , 1989 .
[17] Stavros A. Zenios,et al. A Comparative Study of Algorithms for Matrix Balancing , 1990, Oper. Res..
[18] George W. Soules. The rate of convergence of Sinkhorn balancing , 1991 .
[19] Eva Achilles,et al. Implications of convergence rates in Sinkhorn balancing , 1993 .
[20] Michael H. Schneider,et al. Scaling Matrices to Prescribed Row and Column Maxima , 1994, SIAM J. Matrix Anal. Appl..
[21] Alberto Borobia,et al. Matrix scaling: A geometric proof of Sinkhorn's theorem , 1998 .
[22] Iain S. Duff,et al. On Algorithms For Permuting Large Entries to the Diagonal of a Sparse Matrix , 2000, SIAM J. Matrix Anal. Appl..