Selective Heterogeneous C-H Activation/Halogenation Reactions Catalyzed by Pd@MOF Nanocomposites.

A directed heterogeneous C-H activation/halogenation reaction catalyzed by readily synthesized Pd@MOF nanocatalysts was developed. The heterogeneous Pd catalysts used were a novel and environmentally benign Fe-based metal-organic framework (MOF)(Pd@MIL-88B-NH2(Fe)) and the previously developed Pd@MIL-101-NH2(Cr). Very high conversions and selectivities were achieved under very mild reaction conditions and in short reaction times. A wide variety of directing groups, halogen sources, and substitution patterns were well tolerated, and valuable polyhalogenated compounds were synthesized in a controlled manner. The synthesis of the Pd-functionalized Fe-based MOF and the recyclability of the two catalysts are also presented.

[1]  Ana E. Platero‐Prats,et al.  Influence of the Base on Pd@MIL-101-NH2 (Cr) as Catalyst for the Suzuki-Miyaura Cross-Coupling Reaction. , 2015, Chemistry.

[2]  F. Glorius,et al.  Heterogeneously catalyzed direct C-H thiolation of heteroarenes. , 2015, Angewandte Chemie.

[3]  F. Glorius,et al.  Heterogen katalysierte direkte C‐H‐Thiolierung von Heteroarenen , 2015 .

[4]  Yingwei Li,et al.  In situ one-step synthesis of metal–organic framework encapsulated naked Pt nanoparticles without additional reductants , 2015 .

[5]  Kendra W. Brinkley,et al.  Selective N-chelation-directed C-H activation reactions catalyzed by Pd(II) nanoparticles supported on multiwalled carbon nanotubes. , 2015, Organic letters.

[6]  P. Mukherjee,et al.  A smart approach to achieve an exceptionally high loading of metal nanoparticles supported by functionalized extended frameworks for efficient catalysis. , 2015, Chemical communications.

[7]  Shuhong Yu,et al.  Multifunctional PdAg@MIL-101 for One-Pot Cascade Reactions: Combination of Host–Guest Cooperation and Bimetallic Synergy in Catalysis , 2015 .

[8]  M. Cinellu,et al.  Electronic and steric effects in rollover C-H bond activation , 2015 .

[9]  Rui Wang,et al.  Sodium Halides as Halogenating Reagents: Rhodium(III)-Catalyzed Versatile and Practical Halogenation of Aryl Compounds , 2015 .

[10]  Ana E. Platero‐Prats,et al.  Double-Supported Silica-Metal–Organic Framework Palladium Nanocatalyst for the Aerobic Oxidation of Alcohols under Batch and Continuous Flow Regimes , 2015 .

[11]  Seth M. Cohen,et al.  Metalation of a thiocatechol-functionalized Zr(IV)-based metal-organic framework for selective C-H functionalization. , 2015, Journal of the American Chemical Society.

[12]  T. Akita,et al.  Surfactant-free Pd nanoparticles immobilized to a metal-organic framework with size- and location-dependent catalytic selectivity. , 2015, Chemical communications.

[13]  F. Glorius,et al.  Dual role of Rh(III) catalyst enables regioselective halogenation of (electron-rich) heterocycles. , 2015, Journal of the American Chemical Society.

[14]  Jian Zhang,et al.  Facile synthesis of bimetal Au-Ag nanoparticles in a Cu(I) boron imidazolate framework with mechanochromic properties. , 2015, Chemical communications.

[15]  D. Bradshaw,et al.  Magnetic MOF microreactors for recyclable size-selective biocatalysis† †Electronic supplementary information (ESI) available: Experimental procedures, calibration curves and additional figures relating to capsule characterisation and biocatalysis. See DOI: 10.1039/c4sc03367a Click here for additiona , 2014, Chemical science.

[16]  M. Sanford,et al.  Carbon–hydrogen (C–H) bond activation at PdIV: a Frontier in C–H functionalization catalysis , 2014, Chemical science.

[17]  G. Somorjai,et al.  Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. , 2014, Nano letters.

[18]  Zhiyong Guo,et al.  Tandem Catalysis by Palladium Nanoclusters Encapsulated in Metal–Organic Frameworks , 2014 .

[19]  L. Djakovitch,et al.  Direct C sp2H and C sp3H Arylation Enabled by Heterogeneous Palladium Catalysts , 2014 .

[20]  Christian Serre,et al.  High valence 3p and transition metal based MOFs. , 2014, Chemical Society reviews.

[21]  Andrew McNally,et al.  Palladium-catalysed C–H activation of aliphatic amines to give strained nitrogen heterocycles , 2014, Nature.

[22]  Martin D. Eastgate,et al.  Palau’chlor: A Practical and Reactive Chlorinating Reagent , 2014, Journal of the American Chemical Society.

[23]  Michael Schmidt,et al.  The origin of shape sensitivity in palladium-catalyzed Suzuki-Miyaura cross coupling reactions. , 2014, Angewandte Chemie.

[24]  Zhiyong Guo,et al.  Pt Nanoclusters Confined within Metal–Organic Framework Cavities for Chemoselective Cinnamaldehyde Hydrogenation , 2014 .

[25]  Qiang Xu,et al.  Catalysis with Metal Nanoparticles Immobilized within the Pores of Metal-Organic Frameworks. , 2014, The journal of physical chemistry letters.

[26]  J. Hartwig,et al.  Rhodium-Catalyzed Intermolecular C–H Silylation of Arenes with High Steric Regiocontrol , 2014, Science.

[27]  F. Glorius,et al.  Pd/C als Katalysator für die vollständig regioselektive und milde C-H-Funktionalisierung von Thiophenen† , 2014 .

[28]  F. Glorius,et al.  Pd/C as a catalyst for completely regioselective C-H functionalization of thiophenes under mild conditions. , 2014, Angewandte Chemie.

[29]  Lianhui Wang,et al.  Ruthenium-catalyzed ortho-C-H halogenations of benzamides. , 2014, Chemical communications.

[30]  Ramakrishna G. Bhat,et al.  Chemoselective N-deacetylation under mild conditions. , 2014, Organic & biomolecular chemistry.

[31]  Lei Liu,et al.  Shape-Controlled Synthesis of Palladium Single-Crystalline Nanoparticles: The Effect of HCl Oxidative Etching and Facet-Dependent Catalytic Properties , 2014 .

[32]  Fu‐She Han,et al.  Cu‐Mediated Direct Aryl CH Halogenation: a Strategy to Control Mono‐ and Di‐Selectivity , 2014 .

[33]  Q. Yao,et al.  Sustainable Catalysis: Rational Pd Loading on MIL-101Cr-NH2 for More Efficient and Recyclable Suzuki–Miyaura Reactions , 2013, Chemistry.

[34]  F. Glorius,et al.  Rh(III)-catalyzed halogenation of vinylic C-H Bonds: rapid and general access to Z-halo acrylamides. , 2013, Organic letters.

[35]  S. Ghosh,et al.  Palladium Nanoparticles Supported on ZIF-8 As an Efficient Heterogeneous Catalyst for Aminocarbonylation , 2013 .

[36]  F. Glorius,et al.  Completely regioselective direct C-H functionalization of benzo[b]thiophenes using a simple heterogeneous catalyst. , 2013, Journal of the American Chemical Society.

[37]  Frank Glorius,et al.  C-H bond activation enables the rapid construction and late-stage diversification of functional molecules. , 2013, Nature chemistry.

[38]  F. Song,et al.  Pd-catalyzed oxidative C–H/C–H cross-coupling of pyridines with heteroarenes , 2013 .

[39]  M. Leclerc,et al.  Direct (hetero)arylation: a new tool for polymer chemists. , 2013, Accounts of chemical research.

[40]  F. Glorius,et al.  Ohne dirigierende Gruppen: übergangsmetallkatalysierte C-H-Aktivierung einfacher Arene , 2012 .

[41]  F. Glorius,et al.  Beyond directing groups: transition-metal-catalyzed C-H activation of simple arenes. , 2012, Angewandte Chemie.

[42]  Xiu‐Ping Yan,et al.  Exploring reverse shape selectivity and molecular sieving effect of metal-organic framework UIO-66 coated capillary column for gas chromatographic separation. , 2012, Journal of chromatography. A.

[43]  R. Luque,et al.  Significant promoting effects of Lewis acidity on Au-Pd systems in the selective oxidation of aromatic hydrocarbons. , 2012, Chemical communications.

[44]  H. García,et al.  Catalysis by metal nanoparticles embedded on metal-organic frameworks. , 2012, Chemical Society reviews.

[45]  F. Glorius,et al.  High-yielding, versatile, and practical [Rh(III)Cp*]-catalyzed ortho bromination and iodination of arenes. , 2012, Journal of the American Chemical Society.

[46]  P. Novák,et al.  Synergistic palladium-catalyzed C(sp3)-H activation/C(sp3)-O bond formation: a direct, step-economical route to benzolactones. , 2011, Angewandte Chemie.

[47]  C. Riekel,et al.  How linker's modification controls swelling properties of highly flexible iron(III) dicarboxylates MIL-88. , 2011, Journal of the American Chemical Society.

[48]  M. Mihovilovic,et al.  Functionalization of Saturated and Unsaturated Heterocycles via Transition Metal Catalyzed C-H Activation Reactions , 2011 .

[49]  Weiliang Zhu,et al.  Utilization of halogen bond in lead optimization: a case study of rational design of potent phosphodiesterase type 5 (PDE5) inhibitors. , 2011, Journal of medicinal chemistry.

[50]  M. Haddow,et al.  Mild C-H halogenation of anilides and the isolation of an unusual palladium(I)-palladium(II) species. , 2011, Angewandte Chemie.

[51]  Marcelo Zaldini Hernandes,et al.  Halogen atoms in the modern medicinal chemistry: hints for the drug design. , 2010, Current drug targets.

[52]  F. Kakiuchi,et al.  Palladium-catalyzed aromatic C-H halogenation with hydrogen halides by means of electrochemical oxidation. , 2009, Journal of the American Chemical Society.

[53]  Pierangelo Metrangolo,et al.  Halogenbrücken in der supramolekularen Chemie , 2008 .

[54]  Pierangelo Metrangolo,et al.  Halogen bonding in supramolecular chemistry. , 2008, Angewandte Chemie.

[55]  F. Diederich,et al.  Fluorine in Pharmaceuticals: Looking Beyond Intuition , 2007, Science.

[56]  Zhangjie Shi,et al.  Suzuki-Miyaura coupling reaction by PdII-catalyzed aromatic C-H bond activation directed by an N-alkyl acetamino group. , 2007, Angewandte Chemie.

[57]  M. Sanford,et al.  Scope and selectivity in palladium-catalyzed directed C–H bond halogenation reactions , 2006 .

[58]  M. Sanford,et al.  Oxidative C-H activation/C-C bond forming reactions: synthetic scope and mechanistic insights. , 2005, Journal of the American Chemical Society.

[59]  J. Yeston,et al.  The Mechanism of a C-H Bond Activation Reaction in Room-Temperature Alkane Solution , 1997 .

[60]  Magnus J. Johansson,et al.  Highly functionalized biaryls via Suzuki-Miyaura cross-coupling catalyzed by Pd@MOF under batch and continuous flow regimes. , 2015, ChemSusChem.

[61]  P. Jeschke The unique role of halogen substituents in the design of modern agrochemicals. , 2010, Pest management science.