Cellular dynamics: A new semiclassical approach to time‐dependent quantum mechanics

A new semiclassical approach that constructs the full semiclassical Green’s function propagation of any initial wave function directly from an ensemble of real trajectories, without root searching, is presented. Each trajectory controls a cell of initial conditions in phase space, but the cell area is not constrained by Planck’s constant. The method is shown to be accurate for rather long times in anharmonic oscillators, indicating the semiclassical time‐dependent Green’s function is clearly worthy of more study. The evolution of wave functions in anharmonic potentials is examined and a spectrum from the semiclassical correlation function is calculated, comparing with exact fast Fourier transform results.

[1]  S. Gray,et al.  Wave packet dynamics of van der Waals molecules: Fragmentation of NeCl2 with three degrees of freedom , 1989 .

[2]  K. Kay Improved semiclassical propagation of wave packets , 1989 .

[3]  H. Metiu,et al.  Time‐dependent theory of Raman scattering for systems with several excited electronic states: Application to a H+3 model system , 1989 .

[4]  E. Heller,et al.  Hybrid mechanics. II , 1989 .

[5]  G. D. Billing,et al.  The time propagation of the stationary states of a Morse oscillator by the Gaussian wave packet method , 1989 .

[6]  M. K. Ali,et al.  A note on the application of the semiclassical wave packet dynamics , 1989 .

[7]  J. Kress,et al.  Semiclassical Gaussian wave packet dynamics for collinear reactive scattering , 1988 .

[8]  H. Taylor Spectroscopic order out of spectroscopic chaos , 1987 .

[9]  T. Park,et al.  Unitary quantum time evolution by iterative Lanczos reduction , 1986 .

[10]  H. Metiu,et al.  A Multiple Gaussian Wave Packet Theory of H2 Diffraction and Rotational Excitation by Collision with Solid Surfaces. , 1986 .

[11]  Michael F. Herman Time reversal and unitarity in the frozen Gaussian approximation for semiclassical scattering , 1986 .

[12]  R. Littlejohn The semiclassical evolution of wave packets , 1986 .

[13]  R. T. Skodje,et al.  Localized Gaussian wave packet methods for inelastic collisions involving anharmonic oscillators , 1984 .

[14]  Ronnie Kosloff,et al.  A Fourier method solution for the time dependent Schrödinger equation: A study of the reaction H++H2, D++HD, and D++H2 , 1983 .

[15]  M. Scully,et al.  Wigner phase‐space description of a Morse oscillator , 1982 .

[16]  M. Feit,et al.  Solution of the Schrödinger equation by a spectral method , 1982 .

[17]  M. Karplus,et al.  Extended wave packet dynamics; exact solution for collinear atom, diatomic molecule scattering , 1982 .

[18]  Eric J. Heller,et al.  Wigner phase space method: Analysis for semiclassical applications , 1976 .

[19]  R. Baetzold,et al.  Quantum Dynamics of Anharmonic Oscillators. II. Systems Having One and Two Degrees of Freedom , 1966 .

[20]  K. Freed Path Integrals and Semiclassical Tunneling, Wavefunctions, and Energies , 1972 .