A study on rotational augmentation using CFD analysis of flow in the inboard region of the MEXICO rotor blades

[1]  X Munduate,et al.  Three-Dimensional and Rotational Aerodynamics on the NREL Phase VI Wind Turbine Blade , 2007 .

[2]  David Wood,et al.  A three-dimensional analysis of stall-delay on a horizontal-axis wind turbine , 1991 .

[3]  Niels N. Sørensen,et al.  An evaluation of several methods of determining the local angle of attack on wind turbine blades , 2014 .

[4]  Niels N. Sørensen,et al.  Navier-Stokes predictions of the NREL phase VI rotor in the NASA Ames 80-by-120 wind tunnel , 2002 .

[5]  Jens Nørkær Sørensen,et al.  Quasi-3D Navier-Stokes Model for a Rotating Airfoil , 1999 .

[6]  W. H. H. Banks,et al.  DELAYING EFFECT OF ROTATION ON LAMINAR SEPARATION , 1963 .

[7]  M. Selig,et al.  A 3-D stall-delay model for horizontal axis wind turbine performance prediction , 1998 .

[8]  Jacques Hureau,et al.  Rotational and turbulence effects on a wind turbine blade. Investigation of the stall mechanisms , 2008 .

[9]  Mc Croskey Measurements of boundary layer transition, separation and streamline direction on rotating blades , 1971 .

[10]  Michael S. Selig,et al.  The effect of rotation on the boundary layer of a wind turbine blade , 2000 .

[11]  G. P. Corten Inviscid Stall Model , 2000 .

[12]  Andreas Bechmann,et al.  CFD simulations of the MEXICO rotor , 2011 .

[13]  J. C. Narramore,et al.  Navier-Stokes calculations of inboard stall delay due to rotation , 1992 .

[14]  P. K. Chaviaropoulos,et al.  Investigating Three-Dimensional and Rotational Effects on Wind Turbine Blades by Means of a Quasi-3D Navier-Stokes Solver , 2000 .

[15]  S. G. Rubin,et al.  A diagonally dominant second-order accurate implicit scheme , 1974 .

[16]  Andreas Bechmann,et al.  Near wake Reynolds-averaged Navier–Stokes predictions of the wake behind the MEXICO rotor in axial and yawed flow conditions , 2014 .

[17]  Niels N. Sørensen,et al.  General purpose flow solver applied to flow over hills , 1995 .