Ten-to-twenty gigabit-per-second modulation performance of 1.5- mu m distributed feedback lasers for frequency-shift-keying systems

The frequency modulation (FM) and amplitude modulation (AM) responses of a 1.5- mu m distributed feedback (DFB) laser were measured to 15 GHz. At 9-mW output power, the magnitude of the FM response was flat out to 12 GHz, and there was a 15-25-ps delay between the FM and AM responses. Computer simulation techniques indicate that the measured FM response is adequate to produce good eye patterns for frequency-shift-keying modulation at data rates up to 20 Gb/s. The high-speed frequency-shift-keying modulation capability of this 1.5- mu m DFB laser was experimentally confirmed at 11 Gb/s. >

[1]  M. Choy,et al.  Measurements of the nonlinear damping factor in 1.5-µm distributed feedback lasers , 1989 .

[2]  Shinji Tsuji,et al.  Low threshold operation of 1.5-µm DFB laser diodes , 1987 .

[3]  P. J. Corvini,et al.  Computer simulation of high-bit-rate optical fiber transmission using single-frequency lasers , 1987 .

[4]  R. S. Vodhanel Frequency modulation response measurements to 15 GHz using a novel birefringent fiber interferometer , 1989 .

[5]  N. Takachio,et al.  Compensation of 202 km single-mode fibre chromatic dispersion in 4 Gbit/s optical CPFSK transmission experiment , 1988 .

[6]  D. Welford,et al.  Magnitude and phase characteristics of frequency modulation in directly modulated GaAlAs semiconductor diode lasers , 1985 .

[7]  R. S. Vodhanel,et al.  12 GHz FM bandwidth for a 1530 nm DFB laser , 1988 .

[8]  S. Saito,et al.  Optical heterodyne detection of directly frequency modulated semiconductor laser signals , 1980 .

[9]  J. Osterwalder,et al.  Frequency modulation of GaAlAs injection lasers at microwave frequency rates , 1980 .

[10]  R. W. Tkach,et al.  8 Gbit/s FSK modulation of DFB lasers with optical demodulation , 1989 .

[11]  Measurement of nonlinear gain from FM modulation index of InGaAsP lasers , 1985 .

[12]  J. L. Gimlett,et al.  A 2-Gbit/s optical FSK heterodyne transmission experiment using a 1520-nm DFB laser transmitter , 1987 .

[13]  J. L. Gimlett,et al.  11 Gbit/s optical transmission experiment using 1540 nm DFB laser with non-return-to-zero modulation and PIN/HEMT receiver , 1989 .

[14]  K Furuya,et al.  Reduction of resonancelike peak in direct modulation due to carrier diffusion in injection laser. , 1978, Applied optics.

[15]  Yoshihisa Yamamoto,et al.  Direct frequency modulation in AlGaAs semiconductor lasers , 1982 .

[16]  T. Koch,et al.  Nature of wavelength chirping in directly modulated semiconductor lasers , 1984 .

[17]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[18]  Rodney S. Tucker,et al.  High-speed modulation of semiconductor lasers , 1985 .

[19]  D. J. Channin,et al.  Effect of gain saturation on injection laser switching , 1979 .

[20]  M. Choy,et al.  Measurements of the nonlinear damping factor in 1.5 μm distributed feedback lasers , 1989 .

[21]  Katsumi Emura,et al.  Novel optical FSK heterodyne single filter detection system using a directly modulated DFB-laser diode , 1984 .

[22]  Hiroshi Nishimoto,et al.  Fibre transmission properties of optical pulses produced through direct phase modulation of DFB laser diode , 1988 .

[23]  T. Koch,et al.  Effect of nonlinear gain reduction on semiconductor laser wavelength chirping , 1986 .

[24]  R. S. Vodhanel,et al.  10-20-Gbit/s modulation performance of 1.55-µm DFB lasers for FSK systems , 1989 .

[25]  J. L. Gimlett,et al.  FSK heterodyne transmission experiments at 560 Mbit/s and 1 Gbit/s , 1987 .

[26]  R. Olshansky,et al.  Frequency response of 1.3µm InGaAsP high speed semiconductor lasers , 1987 .