Block copolymer–small molecule supramolecular assembly in thin film: a novel tool for surface patterning of different functional nanomaterials

Supramolecular assembly (SMA) of block copolymer and small molecule has received enormous research interest for its applications in high resolution surface patterning of different functional nanomaterials at different length scales. The patternability of block copolymer supramolecular system results from its ability to self-assemble into a wide range of periodic structures in nanoscopic length scale. The advantages of using supramolecular system over the pure block copolymer are easy tuning of morphology by changing the small molecule composition, introduction of new functionality into the block copolymer layer by using non-covalent interaction and simple removal of the minor component by dissolution from the block copolymer layer to transform it into a porous nanotemplate. In the last few years, our group has extensively studied block copolymer–small molecule supramolecular assembly in thin film and developed some novel SMA systems mostly with an aim to fabricate polymer nanotemplates for further surface patterning with various functional nanomaterials. In this feature article, we will discuss these recent developments in creating such patterns of various functional nanomaterials using block copolymer supramolecular assembly.

[1]  Robert Langer,et al.  A family of hierarchically self-assembling linear-dendritic hybrid polymers for highly efficient targeted gene delivery. , 2005, Angewandte Chemie.

[2]  E. Thomas,et al.  Supramolecular Routes to Hierarchical Structures: Comb-Coil Diblock Copolymers Organized with Two Length Scales , 1999 .

[3]  S. Tung,et al.  Hierarchical Assemblies of Block-Copolymer-Based Supramolecules in Thin Films , 2008 .

[4]  Joachim P. Spatz,et al.  Micro‐Nanostructured Interfaces Fabricated by the Use of Inorganic Block Copolymer Micellar Monolayers as Negative Resist for Electron‐Beam Lithography , 2003 .

[5]  S. Darling Directing the self-assembly of block copolymers , 2007 .

[6]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[7]  C. Ober,et al.  Recent progress in high resolution lithography , 2006 .

[8]  J. Jung,et al.  Directed self-assembly of two kinds of nanoparticles utilizing monolayer films of diblock copolymer micelles. , 2003, Journal of the American Chemical Society.

[9]  W. Roush How Much Is a Program Worth? , 1996 .

[10]  S. Minko,et al.  Microphase Separation in Thin Films of Poly(styrene-block-4-vinylpyridine) Copolymer−2-(4‘-Hydroxybenzeneazo)benzoic Acid Assembly , 2005 .

[11]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[12]  O. Ikkala,et al.  Hierarchical self-assembly in polymeric complexes: towards functional materials. , 2004, Chemical communications.

[13]  J. Jung,et al.  Tunable magnetic arrangement of iron oxide nanoparticles in situ synthesized on the solid substrate from diblock copolymer micelles. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[14]  R. Segalman Patterning with block copolymer thin films , 2005 .

[15]  Erin M. Lennon,et al.  Evolution of Block Copolymer Lithography to Highly Ordered Square Arrays , 2008, Science.

[16]  N. Gindy,et al.  Block Copolymers with Gold Nanoparticles: Correlation between Structural Characteristics and Mechanical Properties , 2009 .

[17]  Sergiy Minko,et al.  Ordered reactive nanomembranes/nanotemplates from thin films of block copolymer supramolecular assembly. , 2003, Journal of the American Chemical Society.

[18]  Bhanu Nandan,et al.  Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties. , 2009, Chemical communications.

[19]  Alexander Eychmüller,et al.  Arrays of Inorganic Nanodots and Nanowires Using Nanotemplates Based on Switchable Block Copolymer Supramolecular Assemblies , 2009 .

[20]  S. Roth,et al.  Nanostructuring of titania thin films by a combination of microfluidics and block-copolymer-based sol-gel templating. , 2011, Small.

[21]  Stephen Y. Chou,et al.  Patterned magnetic nanostructures and quantized magnetic disks , 1997, Proc. IEEE.

[22]  B. Kuila,et al.  Transparent, versatile chemical vapor sensor using supramolecular assembly of block copolymer and carbon nanotubes. , 2010, Macromolecular rapid communications.

[23]  Edwin L. Thomas,et al.  Monolayer films of diblock copolymer microdomains for nanolithographic applications , 1995, Journal of Materials Science.

[24]  F. Caruso,et al.  Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties. , 2007, Nature nanotechnology.

[25]  A. Moser,et al.  Thermal effect limits in ultrahigh-density magnetic recording , 1999 .

[26]  Wei Lu,et al.  Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures , 2004, Nature.

[27]  E. B. Gowd,et al.  Supramolecular Assembly of Poly(styrene)-b-poly(4-vinylpyridine) and 1-Pyrenebutyric Acid in Thin Film and Their Use for Nanofabrication , 2010 .

[28]  Bhanu Nandan,et al.  Supramolecular assemblies of block copolymers as templates for fabrication of nanomaterials , 2011 .

[29]  Bhanu Nandan,et al.  Thin films of block copolymer supramolecular assemblies: Microphase separation and nanofabrication , 2010 .

[30]  Markus Antonietti,et al.  Ionic Self‐Assembly: Facile Synthesis of Supramolecular Materials , 2003 .

[31]  O. Ikkala,et al.  Phase behavior of solvent vapor annealed thin films of PS-b-P4VP(PDP) supramolecules , 2008 .

[32]  P. Simon,et al.  Fungal templates for noble-metal nanoparticles and their application in catalysis. , 2008, Angewandte Chemie.

[33]  E. Thomas,et al.  Orientational Switching of Mesogens and Microdomains in Hydrogen‐Bonded Side‐Chain Liquid‐Crystalline Block Copolymers Using AC Electric Fields , 2004 .

[34]  J. Banfield,et al.  Preparing Single-Phase Nanocrystalline Anatase from Amorphous Titania with Particle Sizes Tailored by Temperature , 2001 .

[35]  Craig J. Hawker,et al.  Block Copolymer Lithography: Merging “Bottom-Up” with “Top-Down” Processes , 2005 .

[36]  Bernard Rodmacq,et al.  Magnetic properties of Co/Pt multilayers deposited on silicon dot arrays , 2000 .

[37]  Margaret Evans Best,et al.  Magnetic characterization and recording properties of patterned Co/sub 70/Cr/sub 18/Pt/sub 12/ perpendicular media , 2002 .

[38]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[39]  M. Ieong,et al.  Silicon Device Scaling to the Sub-10-nm Regime , 2004, Science.

[40]  C. Bazuin,et al.  A Study of the Supramolecular Approach in Controlling Diblock Copolymer Nanopatterning and Nanoporosity on Surfaces , 2006 .

[41]  M. Leskelä,et al.  Multicomb polymeric supramolecules and their self-organization: Combination of coordination and ionic interactions , 2003 .

[42]  O. Ikkala,et al.  Shear alignment at two length scales: Comb-shaped supramolecules self-organized as cylinders-within-lamellar hierarchy , 2003 .

[43]  O. Ikkala,et al.  Self-Assembled Structures in Diblock Copolymers with Hydrogen-Bonded Amphiphilic Plasticizing Compounds , 2006 .

[44]  Jinwoo Lee,et al.  Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. , 2008, Nature materials.

[45]  Chad A Mirkin,et al.  The evolution of dip-pen nanolithography. , 2004, Angewandte Chemie.

[46]  J. Banfield,et al.  UNDERSTANDING POLYMORPHIC PHASE TRANSFORMATION BEHAVIOR DURING GROWTH OF NANOCRYSTALLINE AGGREGATES: INSIGHTS FROM TIO2 , 2000 .

[47]  Sol M Gruner,et al.  Ordered Mesoporous Materials from Metal Nanoparticle–Block Copolymer Self-Assembly , 2008, Science.

[48]  K. Guarini,et al.  Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. , 2000, Science.

[49]  B. Kuila,et al.  Fabrication of oriented polyaniline nanostructures using block copolymer nanotemplates and their optical, electrochemical and electric properties , 2010 .

[50]  J. Banfield,et al.  Thermodynamic analysis of phase stability of nanocrystalline titania , 1998 .

[51]  A. Thünemann Polyelectrolyte–surfactant complexes (synthesis, structure and materials aspects) , 2002 .

[52]  Soo-Jin Park,et al.  Solvent-Induced Transition from Micelles in Solution to Cylindrical Microdomains in Diblock Copolymer Thin Films , 2007 .

[53]  M. Torkkeli,et al.  Poly(4-vinyl pyridine)/zinc dodecyl benzene sulfonate mesomorphic state due to coordination complexation , 1995 .

[54]  B. Kuila,et al.  Supramolecular Assembly of Poly(styrene)‐b‐poly(4‐vinylpyridine) and Ferroceneacetic Acid: An Easy Way to Large‐Scale Controllable Periodic Arrays of Iron Oxide Nanomaterials , 2011, Advanced materials.

[55]  E. Thomas,et al.  Self-Assembled Smectic Phases in Rod-Coil Block Copolymers , 1996, Science.

[56]  Koji Asakawa,et al.  2.5-inch disk patterned media prepared by an artificially assisted self-assembling method , 2002 .

[57]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.