Complete weight enumerators of generalized doubly-even self-dual codes
暂无分享,去创建一个
N. J. A. Sloane | Gabriele Nebe | Eric M. Rains | Heinz Georg Quebbemann | N. Sloane | H. Quebbemann | E. Rains | G. Nebe
[1] W. J. Harvey,et al. TATA LECTURES ON THETA I (Progress in Mathematics, 28) , 1986 .
[2] J. Wolfart. Eine arithmetische Eigenschaft automorpher Formen zu gewissen nicht-arithmetischen Gruppen , 1983 .
[3] W. Ebeling,et al. Lattices and Codes: A Course Partially Based on Lectures by F. Hirzebruch , 1994 .
[4] J. Sturm. The critical values of zeta functions associated to the symplectic group , 1981 .
[5] J. Lehman. Levels of positive definite ternary quadratic forms , 1992 .
[6] M. Harris. Special values of zeta functions attached to Siegel modular forms , 1981 .
[7] G. Frey,et al. A remark concerning m -divisibility and the discrete logarithm in the divisor class group of curves , 1994 .
[8] A simple proof of the modular identity for theta series , 2005 .
[9] YoungJu Choie,et al. The complete weight enumerator of type II codes over Z2m and Jacobi forms , 2001, IEEE Trans. Inf. Theory.
[10] E. M. Rains,et al. Self-Dual Codes , 2002, math/0208001.
[11] David L. Winter,et al. The automorphism group of an extraspecial $p$-group , 1972 .
[12] Don Zagier,et al. Heegner points and derivatives ofL-series , 1986 .
[13] Masaaki Harada,et al. Shadow lattices and shadow codes , 2000, Discret. Math..
[14] Don B. Zagier,et al. On singular moduli. , 1984 .
[15] R. Schulze-Pillot. Thetareihen positiv definiter quadratischer Formen , 1984 .
[16] W. Couwenberg. A simple proof of the modular identity for theta functions , 2003 .
[17] Michio Ozeki. On the notion of Jacobi polynomials for codes , 1997 .
[18] M. Furusawa. On Petersson norms for some liftings , 1984 .
[19] N. J. A. Sloane,et al. The Invariants of the Cli ord , 1999 .
[20] N. M. Katz. P-ADIC Properties of Modular Schemes and Modular Forms , 1973 .
[21] W. Kohnen. On the Petersson norm of a Siegel-Hecke Eigenform of degree two in the Maass space. , 1985 .
[22] W. Kohnen. Lifting modular forms of half-integral weight to Siegel modular forms of even genus , 2002 .
[23] S. Dougherty,et al. SHADOWS OF CODES AND LATTICES , 2002 .
[24] N. J. A. Sloane,et al. Generalizations of Gleason's theorem on weight enumerators of self-dual codes , 1972, IEEE Trans. Inf. Theory.
[25] N. Sloane,et al. A new upper bound for the minimum of an integral lattice of determinant 1 , 1990 .
[26] Neal Koblitz,et al. Hyperelliptic cryptosystems , 1989, Journal of Cryptology.
[27] P. Lockhart. On the discriminant of a hyperelliptic curve , 1994 .
[28] Koichi Betsumiya. The Type II Property for Self-Dual Codes over Finite Fields of Characteristic Two , 2002 .
[29] W. Kohnen,et al. Special values of modular functions on Hecke groups , 2003 .
[30] Patrick Solé,et al. Type II Codes Over F 4 + uF 4 . , 2001 .
[31] Eiichi Bannai,et al. On the Ring of Simultaneous Invariants for the Gleason-MacWilliams Group , 1999, Eur. J. Comb..
[32] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[33] B. M. Fulk. MATH , 1992 .
[34] Michel Broué,et al. Polynômes des poids de certains codes et fonctions thêta de certains réseaux , 1972 .
[35] R. Borcherds. Automorphic forms onOs+2,2(R) and infinite products , 1995 .
[36] T. Ibukiyama. On Jacobi Forms and Siegel Modular Forms of Half Integral Weights , 1992 .
[37] S. Böcherer. Über Funktionalgleichungen automorpher L-Funktionen zur Siegelschen Modulgruppe. , 1985 .
[38] N. Koblitz. Elliptic curve cryptosystems , 1987 .
[39] G. Nebe. Self-dual codes and invariant theory 1 , 2022 .
[40] Alfred Menezes,et al. Isomorphism Classes of Genus-2 Hyperelliptic Curves Over Finite Fields , 2002, Applicable Algebra in Engineering, Communication and Computing.
[41] Patrick Solé,et al. Self-dual codes over Z~4 and half-integral weight modular forms , 2002 .
[42] N. J. A. Sloane,et al. Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.
[43] Eine Invarianzgruppe für die vollständige Gewichtsfunktion selbstdualer Codes , 1989 .
[44] K. Takeuchi. Arithmetic triangle groups , 1977 .
[45] E. Hecke,et al. Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung , 1936 .
[46] Paulo S. L. M. Barreto,et al. Efficient Algorithms for Pairing-Based Cryptosystems , 2002, CRYPTO.
[47] Steven T. Dougherty,et al. Complete joint weight enumerators and self-dual codes , 2003, IEEE Trans. Inf. Theory.
[48] Á. Seress,et al. A mass formula for Type II codes over finite fields of characteristic two , 2002 .
[49] G. Shimura. The critical values of certain zeta functions associated with modular forms of half-integral weight , 1981 .
[50] J. Lehner. Discontinuous Groups and Automorphic Functions , 1964 .
[51] Alain Robert,et al. Introduction to modular forms , 1976 .
[52] A. Andrianov,et al. ON THE ANALYTIC PROPERTIES OF STANDARD ZETA FUNCTIONS OF SIEGEL MODULAR FORMS , 1979 .
[53] D. Zagier. Modular forms whose fourier coefficients involve zeta-functions of quadratic fields , 1977 .
[54] Heinz Georg Quebbemann. On even codes , 1991, Discret. Math..
[55] Gabriel Cardona,et al. Curves of genus two over fields of even characteristic , 2002 .
[56] Shin-ichiro Mizumoto,et al. Poles and residues of standardL-functions attached to Siegel modular forms , 1991 .
[57] T. Gulliver,et al. Type II Self-Dual Codes over Finite Rings and Even Unimodular Lattices , 1997 .
[58] Fernando Q. Gouvêa. Non-Ordinary Primes: A Story , 1997, Exp. Math..
[59] W. Fischer,et al. Sphere Packings, Lattices and Groups , 1990 .
[60] C. Ziegler,et al. Jacobi forms of higher degree , 1989 .
[61] R. Rankin. The Scalar Product of Modular Forms , 1952 .
[62] Masaaki Harada,et al. Type II Codes, Even Unimodular Lattices, and Invariant Rings , 1999, IEEE Trans. Inf. Theory.
[63] Christine Bachoc,et al. Type II codes over Z4 , 1997, IEEE Trans. Inf. Theory.
[64] Eiichi Bannai,et al. Construction of Jacobi forms from certain combinatorial polynomials , 1996 .
[65] A. Andrianov. THE MULTIPLICATIVE ARITHMETIC OR SIEGEL MODULAR FORMS , 1979 .
[66] Michael J. Razar,et al. Modular forms for ₀() and Dirichlet series , 1977 .
[67] H. Niederreiter,et al. Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .
[68] Andrew M. Gleason,et al. WEIGHT POLYNOMIALS OF SELF-DUAL CODES AND THE MacWILLIAMS IDENTITIES , 1970 .
[69] G. Shimura. On the Holomorphy of Certain Dirichlet Series , 1975 .
[70] M. Kerimov. The theory of error-correcting codes☆ , 1980 .
[71] W. Eholzer,et al. Product expansions of conformal characters , 1996, hep-th/9607165.
[72] J. Raleigh. On the Fourier coefficients of triangle functions , 1962 .
[73] Haruzo Hida,et al. Galois representations into GL2 (Zp[[X]]) attached to ordinary cusp forms , 1986 .
[74] Jacques Wolfmann,et al. A class of doubly even self dual binary codes , 1985, Discret. Math..
[75] S. Böcherer. Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen II , 1983 .
[76] W. Kohnen,et al. The arithmetic of the values of modular functions and the divisors of modular forms , 2004, Compositio Mathematica.
[77] Eiichi Bannai,et al. Modular invariance property of association schemes, type II codes over finite rings and finite abelian groups and reminiscences of François Jaeger (a survey) , 1999 .
[78] Jay A. Wood. Duality for modules over finite rings and applications to coding theory , 1999 .
[79] Koichi Betsumiya,et al. Codes over F4, Jacobi forms and Hilbert-Siegel modular forms over Q(sqrt(5)) , 2005, Eur. J. Comb..
[80] Bernhard Liehl,et al. On the group S L 2 over orders of arithmetic type. , 1981 .
[81] P. Stevenhagen,et al. ELLIPTIC FUNCTIONS , 2022 .
[82] Akihiro Munemasa,et al. On type II codes over F4 , 2001, IEEE Trans. Inf. Theory.
[83] W. Kohnen,et al. Special values of elliptic functions at points of the divisors of Jacobi forms , 2003 .
[84] G. C. Shephard,et al. Finite Unitary Reflection Groups , 1954, Canadian Journal of Mathematics.
[85] Jonathan M. Borwein,et al. A cubic counterpart of Jacobi’s identity and the AGM , 1991 .
[86] B. R. McDonald. Finite Rings With Identity , 1974 .
[87] G. Pasquier. Binary Self Dual Codes Construction from Self Dual Codes Over a Galois Field F2m , 1983 .
[88] Jonathan M. Borwein,et al. Cubic Analogues Of The Jacobian Theta Function , 1993 .
[89] Yingpu Deng,et al. Isomorphism classes of hyperelliptic curves of genus 3 over finite fields , 2006, Finite Fields Their Appl..