Asymptotic Theory of Range-Based Multipower Variation

In this paper, we present a realized range-based multipower variation theory, which can be used to estimate return variation and draw jump-robust inference about the diffusive volatility component, when a high-frequency record of asset prices is available. The standard range-statistic--routinely used in financial economics to estimate the variance of securities prices--is shown to be biased when the price process contains jumps. We outline how the new theory can be applied to remove this bias by constructing a hybrid range-based estimator. Our asymptotic theory also reveals that when high-frequency data are sparsely sampled, as is often done in practice due to the presence of microstructure noise, the range-based multipower variations can produce significant efficiency gains over comparable subsampled return-based estimators. The analysis is supported by a simulation study, and we illustrate the practical use of our framework on some recent Trade and Quote (TAQ) equity data. Copyright The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com., Oxford University Press.

[1]  Dick van Dijk,et al.  Range-based covariance estimation using high-frequency data: The realized co-range , 2008 .

[2]  Jia Li Testing for Jumps : A Delta-Hedging Perspective ∗ , 2011 .

[3]  W. Wasserfallen,et al.  The behavior of intra-daily exchange rates , 1985 .

[4]  Thomas J. Barter,et al.  The box , 1997, SIGGRAPH '97.

[5]  P. Hansen,et al.  Realized Variance and Market Microstructure Noise , 2005 .

[6]  S. Johansen,et al.  Asymptotic Theory for Iterated One-Step Huber-Skip Estimators , 2011 .

[7]  Jianqing Fan,et al.  Multi-Scale Jump and Volatility Analysis for High-Frequency Financial Data , 2006 .

[8]  Cecilia Mancini Non-parametric Threshold Estimationfor Models with Stochastic DiffusionCoefficient and Jumps , 2006 .

[9]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[10]  N. Shephard,et al.  Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise , 2006 .

[11]  N. Shephard,et al.  Variation, Jumps, Market Frictions and High Frequency Data in Financial Econometrics , 2005 .

[12]  Michael W. Brandt,et al.  Range-Based Estimation of Stochastic Volatility Models , 2001 .

[13]  R. Oomen,et al.  Testing for Jumps When Asset Prices are Observed with Noise - A Swap Variance Approach , 2007 .

[14]  Robert Fildes,et al.  Journal of business and economic statistics 5: Garcia-Ferrer, A. et al., Macroeconomic forecasting using pooled international data, (1987), 53-67 , 1988 .

[15]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[16]  P. Mykland,et al.  Edgeworth Expansions for Realized Volatility and Related Estimators , 2005 .

[17]  T. Bollerslev,et al.  Intraday periodicity and volatility persistence in financial markets , 1997 .

[18]  Roel C. A. Oomen,et al.  Realised quantile-based estimation of the integrated variance , 2010 .

[19]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[20]  Suzanne S. Lee,et al.  Jumps in Equilibrium Prices and Market Microstructure Noise , 2012 .

[21]  Tim Bollerslev,et al.  Tails, Fears and Risk Premia , 2009 .

[22]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[23]  George Tauchen,et al.  Activity Signature Functions for High-Frequency Data Analysis , 2008 .

[24]  Lan Zhang Efficient Estimation of Stochastic Volatility Using Noisy Observations: A Multi-Scale Approach , 2004, math/0411397.

[25]  Jean Jacod,et al.  A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales , 2004 .

[26]  Kim Christensen,et al.  Bias-correcting the realized range-based variance in the presence of market microstructure noise , 2009, Finance Stochastics.

[27]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[28]  Dobrislav Dobrev Capturing Volatility from Large Price Moves: Generalized Range Theory and Applications , 2007 .

[29]  Mark Podolskij,et al.  Bipower-type estimation in a noisy diffusion setting☆ , 2009 .

[30]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[31]  Viktor Todorov,et al.  Variance Risk-Premium Dynamics: The Role of Jumps , 2010 .

[32]  Mark Podolskij,et al.  Estimation of Volatility Functionals in the Simultaneous Presence of Microstructure Noise and Jumps , 2006 .

[33]  Roberto Renò,et al.  Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling , 2010 .

[34]  Estimation of integrated volatility in stochastic volatility models , 2005 .

[35]  Nour Meddahi,et al.  Box–Cox transforms for realized volatility , 2011 .

[36]  Kerry Back,et al.  Asset pricing for general processes , 1991 .

[37]  M. Parkinson The Extreme Value Method for Estimating the Variance of the Rate of Return , 1980 .

[38]  Dobrislav Dobrev,et al.  The Information Content of High-Frequency Data for Estimating Equity Return Models and Forecasting Risk , 2010 .

[39]  Kevin Sheppard,et al.  Optimal combinations of realised volatility estimators , 2009 .

[40]  A. Pagan,et al.  Economic Analysis and Prediction of Recurrent Events , 2011 .

[41]  Luc Bauwens,et al.  Marginal Likelihood for Markov-Switching and Change-Point GARCH Models , 2011 .

[42]  S. Johansen,et al.  The Properties of Model Selection When Retaining Theory Variables , 2011 .

[43]  T. Bollerslev,et al.  A Reduced Form Framework for Modeling Volatility of Speculative Prices Based on Realized Variation Measures , 2008 .

[44]  A. Christie,et al.  The stochastic behavior of common stock variances: value , 1982 .

[45]  Peter F. Christoffersen,et al.  Forecasting with Option-Implied Information , 2012 .

[46]  Jean Jacod,et al.  Estimating the degree of activity of jumps in high frequency data , 2009, 0908.3095.

[47]  Jeannette H. C. Woerner Power and Multipower Variation: inference for high frequency data , 2006 .

[48]  A. Gallant,et al.  Using Daily Range Data to Calibrate Volatility Diffusions and Extract the Forward Integrated Variance , 1999, Review of Economics and Statistics.

[49]  David S. Bates U.S. stock market crash risk, 1926–2010 , 2012 .

[50]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[51]  E. Mammen,et al.  Identification and Estimation of Local Average Derivatives in Non-Separable Models Without Monotonicity , 2009 .

[52]  Jeremy H. Large Estimating Quadratic Variation When Quoted Prices Change by a Constant Increment , 2007 .

[53]  Viktor Todorov,et al.  Estimation of continuous-time stochastic volatility models with jumps using high-frequency data , 2009 .

[54]  Jean Jacod,et al.  Microstructure Noise in the Continuous Case: The Pre-Averaging Approach - JLMPV-9 , 2007 .

[55]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[56]  George Tauchen,et al.  Cross-Stock Comparisons of the Relative Contribution of Jumps to Total Price Variance , 2012 .

[57]  Peter F. Christoffersen,et al.  Do Realized Skewness and Kurtosis Predict the Cross-Section of Equity Returns? , 2011 .

[58]  R. Rifkin Information content. , 1981, Circulation.

[59]  Tim Bollerslev,et al.  Risk, Jumps, and Diversification , 2007 .

[60]  Nour Meddahi,et al.  BOOTSTRAPPING REALIZED VOLATILITY , 2009 .

[61]  Nicholas G. Polson,et al.  The Impact of Jumps in Volatility and Returns , 2000 .

[62]  Luca Benzoni,et al.  An Empirical Investigation of Continuous-Time Equity Return Models , 2001 .

[63]  D. Dijk,et al.  Measuring volatility with the realized range , 2006 .

[64]  Hugues Langlois,et al.  The Joint Dynamics of Equity Market Factors , 2011 .

[65]  R. Oomen Properties of Realized Variance Under Alternative Sampling Schemes , 2006 .

[66]  Neil Shephard,et al.  Limit theorems for multipower variation in the presence of jumps , 2006 .

[67]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[68]  F. Diebold,et al.  Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility , 2005, The Review of Economics and Statistics.

[69]  Jump-Robust Volatility Estimation Using Nearest Neighbor Truncation , 2010 .

[70]  F. Diebold,et al.  Financial Risk Measurement for Financial Risk Management , 2011 .

[71]  P. Mykland,et al.  Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics , 2008 .

[72]  Kim Christensen,et al.  Realized Range-Based Estimation of Integrated Variance , 2006 .

[73]  Lars Stentoft,et al.  American Option Pricing with Discrete and Continuous Time Models: An Empirical Comparison , 2011 .

[74]  Lan Zhang,et al.  A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High Frequency Data , 2003 .

[75]  Mark Podolskij,et al.  Fact or Friction: Jumps at Ultra High Frequency , 2014 .

[76]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[77]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .

[78]  P. Protter Stochastic integration and differential equations , 1990 .

[79]  S. Johansen,et al.  Statistical Analysis of Global Surface Air Temperature and Sea Level Using Cointegration Methods , 2011 .

[80]  N. Shephard,et al.  Realized Kernels in Practice: Trades and Quotes , 2009 .

[81]  Roberto Renò,et al.  Threshold Bipower Variation and the Impact of Jumps on Volatility Forecasting , 2008 .

[82]  A. Gallant,et al.  Alternative models for stock price dynamics , 2003 .

[83]  Jean Jacod,et al.  Testing for Jumps in a Discretely Observed Process , 2007 .

[84]  N. Shephard,et al.  Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation , 2005 .

[85]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[86]  J. Jacod,et al.  Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data , 2009 .

[87]  P. Mykland A Gaussian calculus for inference from high frequency data , 2010, Annals of Finance.

[88]  Bin Zhou,et al.  High Frequency Data and Volatility in Foreign Exchange Rates , 2013 .

[89]  Michael W. Brandt,et al.  A No-Arbitrage Approach to Range-Based Estimation of Return Covariances and Correlations , 2002 .

[90]  George Tauchen,et al.  Realized Jumps on Financial Markets and Predicting Credit Spreads , 2006 .