Efficient Two-Dimensional Pattern Matching with Scaling and Rotation and Higher-Order Interpolation

Two-dimensional pattern matching with scaling and rotation for given pattern P and text T is the computational problem of finding a subtext in T such that a scaled and rotated transformation of P most accurately resembles the subtext. Applications of pattern matching are found, for instance, in computer vision, medical imaging, pattern recognition and watermarking. All known approaches to find a globally optimal matching depend on the basic nearest-neighbor interpolation. To use higher-order interpolations, current algorithms apply numerical techniques that provide only locally optimal solutions. This paper presents the first algorithm to find an optimal match under a large class of higher-order interpolation methods including bilinear and bicubic. The algorithm exploits a discrete characterization of the parameter space for scalings and rotations to achieve a polynomial time complexity.

[1]  Raimund Seidel,et al.  Constructing Arrangements of Lines and Hyperplanes with Applications , 1986, SIAM J. Comput..

[2]  Moshe Lewenstein,et al.  Real Two Dimensional Scaled Matching , 2007, Algorithmica.

[3]  Maciej Liskiewicz,et al.  A combinatorial geometrical approach to two-dimensional robust pattern matching with scaling and rotation , 2009, Theor. Comput. Sci..

[4]  S. Rump Polynomial minimum root separation , 1979 .

[5]  Gonzalo Navarro,et al.  Sequential and indexed two-dimensional combinatorial template matching allowing rotations , 2005, Theor. Comput. Sci..

[6]  Alan C. Bovik,et al.  Handbook of Image and Video Processing (Communications, Networking and Multimedia) , 2005 .

[7]  Jan Modersitzki,et al.  Numerical Methods for Image Registration , 2004 .

[8]  Gad M. Landau,et al.  Two-dimensional pattern matching with rotations , 2004, Theor. Comput. Sci..

[9]  Piotr Indyk,et al.  Geometric matching under noise: combinatorial bounds and algorithms , 1999, SODA '99.

[10]  Walter G. Kropatsch,et al.  Digital image analysis: selected techniques and applications , 2001 .

[11]  Ioannis Z. Emiris,et al.  On the asymptotic and practical complexity of solving bivariate systems over the reals , 2009, J. Symb. Comput..

[12]  Piotr Indyk,et al.  Algorithmic applications of low-distortion geometric embeddings , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[13]  Esko Ukkonen,et al.  A Rotation Invariant Filter for Two-Dimensional String Matching , 1998, CPM.

[14]  Max A. Viergever,et al.  A survey of medical image registration , 1998, Medical Image Anal..

[15]  Amihood Amir,et al.  Faster Two Dimensional Scaled Matching , 2006, CPM.

[16]  Gad M. Landau,et al.  Pattern matching in a digitized image , 1992, SODA '92.

[17]  Jerry D. Gibson,et al.  Handbook of Image and Video Processing , 2000 .

[18]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[19]  Amihood Amir,et al.  Faster Two Dimensional Pattern Matching with Rotations , 2004, CPM.