Far-out surface science: radiation-induced surface processes in the solar system

Interplanetary space is a cosmic laboratory for surface scientists. Energetic photons, ions and electrons from the solar wind, together with galactic and extragalactic cosmic rays, constantly bombard surfaces of planets, planetary satellites, dust particles, comets and asteroids. Many of these bodies exist in ultrahigh vacuum environments, so that direct particle–surface collisions dominate the interactions. In this article, we discuss the origins of the very tenuous planetary atmospheres observed on a number of bodies, space weathering of the surface of asteroids and comets, and magnetospheric processing of the surfaces of Jupiter’s icy satellites. We emphasize non-thermal processes and the important relationships between surface composition and the gas phase species observed. We also discuss what laboratory and computational modeling should be done to support the current and future space missions––e.g. the Genesis mission to recover solar wind particles, the Cassini mission to probe Saturn, the Europa Lander mission to explore the subsurface ocean hypothesis, and the Pluto/Kuiper Express to sample the outer reaches of the solar system. 2001Elsevier Science B.V. All rights reserved.

[1]  E. Bringa,et al.  Molecular-dynamics simulations of electronic sputtering , 1999 .

[2]  R. E. Johnson,et al.  Photodesorption from low-temperature water ice in interstellar and circumsolar grains , 1995, Nature.

[3]  T. Orlando,et al.  Production of O2 on icy satellites by electronic excitation of low-temperature water ice , 1998, Nature.

[4]  Cesare Barbieri,et al.  Possible detection of meteor stream effects on the lunar sodium atmosphere , 1998 .

[5]  W. Lewis,et al.  Europa's surface composition and sputter‐produced ionosphere , 1998 .

[6]  T. Madey Electron- and Photon-Stimulated Desorption: Probes of Structure and Bonding at Surfaces , 1986, Science.

[7]  O. White The Solar Output and Its Variation , 1977 .

[8]  Jeffrey S. Kargel,et al.  Brine volcanism and the interior structures of asteroids and icy satellites , 1991 .

[9]  A. McEwen,et al.  Geology of 243 Ida , 1996 .

[10]  Shea L. Valley Handbook of Geophysics and Space Environments , 1966 .

[11]  E. Whipple,et al.  Potentials of surfaces in space , 1981 .

[12]  R. Wiens,et al.  Sputtering Products of Sodium Sulfate: Implications for Io's Surface and for Sodium-Bearing Molecules in the Io Torus☆ , 1997 .

[13]  T. McCord,et al.  Thermal and radiation stability of the hydrated salt minerals epsomite, mirabilite, and natron under Europa environmental conditions , 2001 .

[14]  Henry B. Garrett,et al.  Energetic Ion and Electron Irradiation of the Icy Galilean Satellites , 2001 .

[15]  W. Augustyniak,et al.  Erosion and molecule formation in condensed gas films by electronic energy loss of fast ions , 1982 .

[16]  R. Lundin Erosion by the Solar Wind , 2001, Science.

[17]  J. K. Crowley,et al.  Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer. The NIMS Team. , 1998, Science.

[18]  R. E. Johnson,et al.  Detection of ozone on Saturn's satellites Rhea and Dione , 1997, Nature.

[19]  T. Madey,et al.  Photon-stimulated desorption as a substantial source of sodium in the lunar atmosphere , 1999, Nature.

[20]  Robert E. Johnson,et al.  O2/O3 Microatmospheres in the Surface of Ganymede , 1997 .

[21]  L. McFadden,et al.  Surface modification of olivine by H+ and He+ bombardment , 1999 .

[22]  J. Richardson,et al.  OH in Saturn's magnetosphere: Observations and implications , 1998 .

[23]  John R. Spencer,et al.  Charge‐coupled device spectra of the Galilean satellites: Molecular oxygen on Ganymede , 1995 .

[24]  P. D. Feldman,et al.  Detection of an oxygen atmosphere on Jupiter's moon Europa , 1995, Nature.

[25]  J. Benson Direct measurement of the plasma screening length and surface potential near the lunar terminator , 1977 .

[26]  A. Davis,et al.  New instrument for microbeam analysis incorporating submicron imaging and resonance ionization mass spectrometry , 1995 .

[27]  T. H. Morgan,et al.  Coronagraphic observations of the lunar sodium exosphere near the lunar surface , 1998 .

[28]  R. Hill,et al.  Discovery of an extended sodium atmosphere around Europa , 1996, Nature.

[29]  M. Horányi,et al.  Photoelectric charging of dust particles in vacuum. , 2000, Physical review letters.

[30]  A. Potter,et al.  Discovery of Sodium in the Atmosphere of Mercury , 1985, Science.

[31]  D. Hunten,et al.  Origin and character of the lunar and mercurian atmospheres , 1997 .

[32]  R. E. Johnson,et al.  Sputtering of sodium on the planet Mercury , 1986, Nature.

[33]  C. Chyba,et al.  Energy for microbial life on Europa , 2000, Nature.

[34]  Robert E. Johnson Effect of irradiation on the surface of Pluto , 1989 .

[35]  Robert E. Johnson Comment on The Evolution of Interplanetary Grains , 1985 .

[36]  R. Manka,et al.  PLASMA AND POTENTIAL AT THE LUNAR SURFACE , 1973 .

[37]  H. Zook,et al.  Large scale lunar horizon glow and a high altitude lunar dust exosphere , 1991 .

[38]  Orlando,et al.  Low-energy (5-120 eV) electron-stimulated dissociation of amorphous D2O ice: D(2S), O(3P2,1,0), and O(1D2) yields and velocity distributions. , 1995, Physical review letters.

[39]  J. Richardson,et al.  Saturn's E Ring and Production of the Neutral Torus , 2001 .

[40]  K. R. Farmer,et al.  Ion-induced molecular ejection from D_2O ice , 1984 .

[41]  P. Ehrenfreund,et al.  Ultraviolet processing of interstellar ice analogs. I. Pure ices. , 1996 .

[42]  Robert E. Johnson,et al.  Photolysis and radiolysis of water ice on outer solar system bodies , 1997 .

[43]  Robert E. Johnson,et al.  Sputter‐produced plasma as a measure of satellite surface composition: The CASSINI mission , 1990 .

[44]  Bruce Fegley,et al.  The Planetary Scientist's Companion , 1998 .

[45]  William E. McClintock,et al.  Galileo ultraviolet spectrometer observations of atomic hydrogen in the atmosphere of Ganymede , 1997 .

[46]  C. T. Russell,et al.  Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto , 1998, Nature.

[47]  B. Clark,et al.  Interplanetary weathering: Surface erosion in outer space , 1996 .

[48]  G. Strazzulla,et al.  Primordial comet mantle : irradiation production of a stable, organic crust , 1991 .

[49]  R. Carlson,et al.  A tenuous carbon dioxide atmosphere on Jupiter's moon Callisto. , 1999, Science.

[50]  A. Potter,et al.  Discovery of Sodium and Potassium Vapor in the Atmosphere of the Moon , 1988, Science.

[51]  A. E. Cole,et al.  Handbook of Geophysics and Space. Environments , 1983 .

[52]  J. Burns,et al.  The Dynamics of Saturn's E Ring Particles , 1992 .

[53]  A. Bar-Nun,et al.  Ejection of H_2O, O_2, H_2 and H from water ice by 0.5-6 keV H^+ and Ne^+ ion bombardment , 1985 .

[54]  M. Mendillo,et al.  OBSERVATIONAL TEST FOR THE SOLAR WIND SPUTTERING ORIGIN OF THE MOON'S EXTENDED SODIUM ATMOSPHERE , 1999 .

[55]  T. Madey,et al.  Electron‐ and photon‐stimulated desorption of K from ice surfaces , 2001 .

[56]  Robert E. Johnson,et al.  Magnetospheric ion bombardment profiles of satellites - Europa and Dione , 1989 .

[57]  Robert E. Johnson,et al.  Planetary applications of ion induced erosion of condensed gas frosts , 1982 .

[58]  R. E. Johnson,et al.  Fast Ion Bombardment of Ices and Its Astrophysical Implications , 1982, Science.

[59]  Robert E. Johnson Sodium at Europa , 2000 .

[60]  Theodore E. Madey,et al.  Desorption of alkali atoms and ions from oxide surfaces: Relevance to origins of Na and K in atmospheres of Mercury and the Moon , 1998 .

[61]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[62]  J A Simpson,et al.  Elemental and Isotopic Composition of the Galactic Cosmic Rays , 1983 .

[63]  Brown,et al.  Linear-to-quadratic transition in electronically stimulated sputtering of solid N2 and O2. , 1991, Physical review. B, Condensed matter.

[64]  David A. Williams,et al.  It's a dusty Universe: surface science in space , 2002 .

[65]  W. Calaway Impurity characterization of solar wind collectors for the genesis discovery mission by resonance ionization mass spectrometry. , 1998 .

[66]  T. Orlando,et al.  ELECTRON-STIMULATED DESORPTION OF D+ FROM D2O ICE : SURFACE STRUCTURE AND ELECTRONIC EXCITATIONS , 1997 .

[67]  T. Madey,et al.  Electron stimulated desorption of alkali metal ions and atoms: Local surface field relaxation , 1995 .

[68]  X.-L. Zhou,et al.  Photochemistry at adsorbate/metal interfaces , 1991 .

[69]  R. E. Johnson,et al.  Effects of charged particles on the surfaces of the satellites of Uranus , 1987 .

[70]  David J. McComas,et al.  Lunar surface composition and solar wind‐Induced secondary ion mass spectrometry , 1991 .

[71]  D. P. Woodruff,et al.  Modern techniques of surface science , 1986 .

[72]  R E Johnson,et al.  Hydrogen peroxide on the surface of Europa. , 1999, Science.

[73]  M. Mendillo,et al.  Constraints on the origin of the Moon's atmosphere from observations during a lunar eclipse , 1995, Nature.

[74]  R. E. Johnson,et al.  Sulfuric acid on Europa and the radiolytic sulfur cycle. , 1999, Science.

[75]  R. J. L. Grard,et al.  Photon and particle interactions with surfaces in space : proceedings of the 6th Eslab Symposium, held at Noordwijk, The Netherlands, 26-29 september, 1972 , 1973 .

[76]  R. E. Johnson,et al.  Ejection of sodium from sodium sulfide by the sputtering of the surface of Io , 1988 .

[77]  Robert E. Johnson,et al.  Charging of ice grains by low-energy plasmas : application to Saturn's E ring , 1995 .