Monitoring the influence of antibiotic exposure using Raman spectroscopy

Here we report on combination of the data obtained from MICs (minimum inhibitory concentrations) with infor- mation of microoragnisms fingerprint provided by Raman spectroscopy. In our feasibility study we could follow mechanisms of the bacteriostatic versus bactericidal action on biofilm-positive Staphylococcus epidermidis simply by monitoring Raman bands corresponding to DNA translating the changes introduced by selected antibiotics. The Raman spectra of Staphylococcus epidermidis treated with a bacteriostatic agent show little effect on DNA which is in contrast with the action of a bactericidal agent where decreased in dedicated Raman spectra signal strength suggests DNA fragmentation. Moreover, we demonstrate that Raman tweezers are indeed able to distinguish strains of biofilm-forming (biofilm-positive) and biofilm-negative Staphylococcus epidermidis strains using principal component analysis (PCA).

[1]  P. Vandenabeele,et al.  Reference database of Raman spectra of biological molecules , 2007 .

[2]  Ioan Notingher,et al.  Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro , 2006, Expert review of medical devices.

[3]  Anthony J. Hickey,et al.  Raman characterization and chemical imaging of biocolloidal self-assemblies, drug delivery systems, and pulmonary inhalation aerosols: A review , 2007, AAPS PharmSciTech.

[4]  Pavel Zemánek,et al.  Light at work: The use of optical forces for particle manipulation, sorting, and analysis , 2008, Electrophoresis.

[5]  Pavel Zemánek,et al.  Following the Mechanisms of Bacteriostatic versus Bactericidal Action Using Raman Spectroscopy , 2013, Molecules.

[6]  Luc Moens,et al.  Methods for extracting biochemical information from bacterial Raman spectra: focus on a group of structurally similar biomolecules--fatty acids. , 2007, Analytica chimica acta.

[7]  Carlos Bustamante,et al.  Recent advances in optical tweezers. , 2008, Annual review of biochemistry.

[8]  J. Popp,et al.  Vibrational spectroscopy—A powerful tool for the rapid identification of microbial cells at the single‐cell level , 2009, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[9]  A. Hjerpe,et al.  Identity of macromolecules present in the extracellular slime layer of Staphylococcus epidermidis. , 1995, Biochimie.

[10]  Yufeng Yao,et al.  A Crucial Role for Exopolysaccharide Modification in Bacterial Biofilm Formation, Immune Evasion, and Virulence* , 2004, Journal of Biological Chemistry.

[11]  Ota Samek,et al.  The potential of Raman spectroscopy for the identification of biofilm formation by Staphylococcus epidermidis , 2010 .

[12]  T. S. Wilkinson,et al.  An extracellular Staphylococcus epidermidis polysaccharide: relation to Polysaccharide Intercellular Adhesin and its implication in phagocytosis , 2012, BMC Microbiology.

[13]  M. Huo,et al.  Effect of End Groups on the Raman Spectra of Lycopene and β-Carotene under High Pressure , 2011, Molecules.

[14]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[15]  D. Hanstorp,et al.  Sorting Out Bacterial Viability with Optical Tweezers , 2000, Journal of bacteriology.

[16]  Karen Leus,et al.  Raman spectroscopic study of bacterial endospores , 2007, Analytical and bioanalytical chemistry.

[17]  K. Neuman,et al.  Optical trapping. , 2004, The Review of scientific instruments.

[18]  Ioan Notingher,et al.  Raman Spectroscopy Cell-based Biosensors , 2007, Italian National Conference on Sensors.

[19]  A. Talari,et al.  Raman Spectroscopy of Biological Tissues , 2007 .

[20]  Pavel Zemánek,et al.  Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids in vivo , 2010, Sensors.

[21]  R. Briandet,et al.  Resistance of bacterial biofilms to disinfectants: a review , 2011, Biofouling.

[22]  T. Smith-Palmer,et al.  Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ , 2007, Journal of applied microbiology.

[23]  P. Zemánek,et al.  Optical trapping of microalgae at 735-1064 nm: photodamage assessment. , 2013, Journal of photochemistry and photobiology. B, Biology.

[24]  R. Horvat,et al.  Biofilm detection and the clinical significance ofStaphylococcus epidermidis isolates , 2008, Folia Microbiologica.

[25]  D V Petrov,et al.  Raman spectroscopy of optically trapped particles , 2007 .

[26]  Ota Samek,et al.  Raman spectroscopy for rapid discrimination of Staphylococcus epidermidis clones related to medical device-associated infections , 2008 .

[27]  A. Shen,et al.  Noninvasive Metabolomic Profiling of Human Embryo Culture Media Using a Simple Spectroscopy Adjunct to Morphology for Embryo Assessment in in Vitro Fertilization (IVF) , 2013, International journal of molecular sciences.

[28]  D. Naumann,et al.  Identification of medically relevant microorganisms by vibrational spectroscopy. , 2002, Journal of microbiological methods.

[29]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.