A comparison of simultaneous state and parameter estimation schemes for a continuous fermentor reactor

[1]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[2]  R. Shumway,et al.  AN APPROACH TO TIME SERIES SMOOTHING AND FORECASTING USING THE EM ALGORITHM , 1982 .

[3]  D. Rubin Using the SIR algorithm to simulate posterior distributions , 1988 .

[4]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[5]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[6]  Dale E. Seborg,et al.  Nonlinear Process Control , 1996 .

[7]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[8]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[9]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[10]  S. Haykin Kalman Filtering and Neural Networks , 2001 .

[11]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[12]  Christophe Andrieu,et al.  Online expectation-maximization type algorithms for parameter estimation in general state space models , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[13]  A. Doucet,et al.  Parameter estimation in general state-space models using particle methods , 2003 .

[14]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[15]  Christophe Andrieu,et al.  Particle methods for change detection, system identification, and control , 2004, Proceedings of the IEEE.

[16]  Rolf Johan Lorentzen,et al.  Analysis of the ensemble Kalman filter for estimation of permeability and porosity in reservoir models , 2005 .

[17]  Elaine Martin,et al.  Particle filters for state and parameter estimation in batch processes , 2005 .

[18]  D. Stoffer,et al.  Parameter estimation in stochastic volatility models with missing data using particle methods and the em algorithm , 2005 .

[19]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[20]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[21]  Thomas B. Schön,et al.  Parameter Estimation for Discrete-Time Nonlinear Systems Using EM , 2008 .

[22]  Simo Särkkä,et al.  Unscented Rauch-Tung-Striebel Smoother , 2008, IEEE Trans. Autom. Control..

[23]  Giorgio Battistelli,et al.  Unfalsified Virtual Reference Adaptive Switching Control of Plants with Persistent Disturbances , 2008 .

[24]  R. B. Gopaluni Identification of Nonlinear Processes with known Model Structure Under Missing Observations , 2008 .

[25]  R. B. Gopaluni A particle filter approach to identification of nonlinear processes under missing observations , 2008 .

[26]  Geir Evensen Estimation in an oil reservoir simulator , 2009 .

[27]  Y. Bar-Shalom,et al.  The probabilistic data association filter , 2009, IEEE Control Systems.

[28]  Sirish L. Shah,et al.  Comparison of Expectation-Maximization based parameter estimation using Particle Filter, Unscented and Extended Kalman Filtering techniques , 2009 .

[29]  Arnaud Doucet,et al.  An overview of sequential Monte Carlo methods for parameter estimation in general state-space models , 2009 .

[30]  G. Evensen The ensemble Kalman filter for combined state and parameter estimation , 2009, IEEE Control Systems.

[31]  Alexandra Seiler,et al.  Advanced Reservoir Management Workflow Using an EnKF Based Assisted History Matching Method , 2009 .

[32]  R. Bhushan Gopaluni,et al.  Nonlinear system identification under missing observations: The case of unknown model structure , 2010 .