Nanoptera in a Period-2 Toda Chain

We study asymptotic solutions to a singularly-perturbed, period-2 Toda lattice and use exponential asymptotics to examine `nanoptera', which are nonlocal solitary waves with constant-amplitude, exponentially small wave trains. With this approach, we isolate the exponentially small, constant-amplitude waves, and we elucidate the dynamics of these waves in terms of the Stokes phenomenon. We find a simple asymptotic expression for the waves, and we study configurations in which these waves vanish, producing localized solitary-wave solutions. In the limit of small mass ratio, we derive a simple anti-resonance condition for the manifestation these wave-free solutions.

[1]  Guillaume James,et al.  Nonlinear Waves in a Strongly Nonlinear Resonant Granular Chain , 2015 .

[2]  Yuli Starosvetsky,et al.  Solitary waves in diatomic chains. , 2016, Physical review. E.

[3]  John R. King,et al.  Stokes Phenomenon and Matched Asymptotic Expansions , 1995, SIAM J. Appl. Math..

[4]  J. M. Arnold,et al.  Complex Toda lattice and its application to the theory of interacting optical solitons , 1998 .

[5]  Michael V Berry,et al.  Asymptotics, Superasymptotics, Hyperasymptotics... , 1991 .

[6]  P. C. Dash,et al.  Solitons in Nonlinear Diatomic Lattices , 1981 .

[7]  Roger H.J. Grimshaw Exponential Asymptotics and Generalized Solitary Waves , 2010 .

[8]  S. Diederich,et al.  Dynamic form factors of the diatomic Toda lattice , 1985 .

[9]  J. Douglas Wright,et al.  Nanopteron solutions of diatomic Fermi–Pasta–Ulam–Tsingou lattices with small mass-ratio , 2017, 1703.00026.

[10]  Philippe H. Trinh Exponential Asymptotics and Stokes Line Smoothing for Generalized Solitary Waves , 2014, 1410.4124.

[11]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[12]  J. Boyd Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics , 1998 .

[13]  Hong Zhao,et al.  Heat conduction in a one-dimensional aperiodic system. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  John P. Boyd,et al.  Hyperasymptotics and the Linear Boundary Layer Problem: Why Asymptotic Series Diverge , 2005, SIAM Rev..

[15]  P. C. Dash,et al.  Nonlinear wave in a diatomic Toda lattice , 1981 .

[16]  Alexander F. Vakakis,et al.  Nonlinear Resonances Leading to Strong Pulse Attenuation in Granular Dimer Chains , 2012, Journal of nonlinear science.

[17]  Scott W. McCue,et al.  Free surface flow past topography: A beyond-all-orders approach , 2012, European Journal of Applied Mathematics.

[18]  Chiara Daraio,et al.  Granular metamaterials for vibration mitigation , 2013 .

[19]  George Gabriel Stokes,et al.  Mathematical and Physical Papers: 1857. On the Discontinuity of Arbitrary Constants which appear in Divergent Developments , 2009 .

[20]  Mason A. Porter,et al.  Highly Nonlinear Solitary Waves in Heterogeneous Periodic Granular Media , 2007, 0712.3552.

[21]  S. Flach,et al.  Nonlinear Lattice Waves in Random Potentials , 2014, 1405.1122.

[22]  T. V. Laptyeva,et al.  Nonlinear lattice waves in heterogeneous media , 2014, 1407.1441.

[23]  Mason A. Porter,et al.  Granular crystals: Nonlinear dynamics meets materials engineering , 2015 .

[24]  V. Nesterenko,et al.  Dynamics of Heterogeneous Materials , 2001 .

[25]  Michael Hörnquist,et al.  Solitary Wave Propagation in Periodic and Aperiodic Diatomic Toda Lattices , 1996 .

[26]  H. Buttner,et al.  Thermal conductivity in the diatomic Toda lattice , 1983 .

[27]  Chen,et al.  Radiations by "solitons" at the zero group-dispersion wavelength of single-mode optical fibers. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[28]  Carles Simó,et al.  High-precision computations of divergent asymptotic series and homoclinic phenomena , 2008 .

[29]  R. Dingle Asymptotic expansions : their derivation and interpretation , 1975 .

[30]  Mjd Powell,et al.  A Fortran subroutine for solving systems of non-linear algebraic equations , 1968 .

[31]  M. Kruskal,et al.  Nonexistence of small-amplitude breather solutions in phi4 theory. , 1987, Physical review letters.

[32]  Surajit Sen,et al.  Discrete Hertzian chains and solitons , 1999 .

[33]  Jarmo Hietarinta,et al.  Numerical study of solitons in the damped AC-driven Toda lattice , 1993 .

[34]  D. Levi,et al.  DISCRETE MULTISCALE ANALYSIS: A BIATOMIC LATTICE SYSTEM , 2010, Journal of Nonlinear Mathematical Physics.

[35]  R. Hirota,et al.  Theoretical and experimental studies of lattice solitons in nonlinear lumped networks , 1973 .

[36]  O V Gendelman,et al.  Heat conduction in one-dimensional lattices with on-site potential. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  John Guckenheimer,et al.  Mixed-Mode Oscillations with Multiple Time Scales , 2012, SIAM Rev..

[38]  Alan R. Champneys,et al.  Discrete Traveling Solitons in the Salerno Model , 2009, SIAM J. Appl. Dyn. Syst..

[39]  Eunho Kim,et al.  Wave propagation in single column woodpile phononic crystals: Formation of tunable band gaps , 2014 .

[40]  John P. Boyd,et al.  The Devil's Invention: Asymptotic, Superasymptotic and Hyperasymptotic Series , 1999 .

[41]  Yoshinori Tabata Stable Solitary Wave in Diatomic Toda Lattice , 1996 .

[42]  Alfred Ramani,et al.  Structural stability of the Korteweg-De Vries solitons under a singular perturbation , 1988 .

[43]  Philippe H. Trinh,et al.  New gravity–capillary waves at low speeds. Part 1. Linear geometries , 2013, Journal of Fluid Mechanics.

[44]  Surajit Sen,et al.  Solitary waves in the granular chain , 2008 .

[45]  Joseph Ford,et al.  Stochastic transition in the unequal-mass Toda lattice , 1975 .

[46]  S. Ulam,et al.  Studies of nonlinear problems i , 1955 .

[47]  Chiara Daraio,et al.  Wave propagation in granular chains with local resonances. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Feng Li,et al.  Highly nonlinear wave propagation in elastic woodpile periodic structures. , 2014, Physical review letters.

[49]  Chiara Daraio,et al.  Solitary waves in a chain of repelling magnets , 2014 .

[50]  Alexander F Vakakis,et al.  New family of solitary waves in granular dimer chains with no precompression. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Flytzanis,et al.  Soliton dynamics of nonlinear diatomic lattices. , 1986, Physical review. B, Condensed matter.

[52]  G. Darboux,et al.  Mémoire sur l'approximation des fonctions de très-grands nombres, et sur une classe étendue de développements en série. , 1878 .

[53]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[54]  Morikazu Toda,et al.  Wave Propagation in Anharmonic Lattices , 1967 .

[55]  Morikazu Toda,et al.  Theory Of Nonlinear Lattices , 1981 .

[56]  P. G. Kevrekidis,et al.  Traveling waves and their tails in locally resonant granular systems , 2014, 1412.5462.

[57]  M. Ablowitz,et al.  On the solitary wave pulse in a chain of beads , 2005 .

[58]  Kivshar,et al.  Gap solitons in diatomic lattices. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[59]  Shinsuke Watanabe,et al.  Solitary Wave in Periodic Nonlinear Lattice , 1990 .

[60]  Gregory Kozyreff,et al.  Exponential asymptotics of localised patterns and snaking bifurcation diagrams , 2009 .

[61]  Junkichi Satsuma,et al.  Soliton Solutions in a Diatomic Lattice System , 1979 .

[62]  Klaus Kirchgässner,et al.  Travelling Waves in a Chain¶of Coupled Nonlinear Oscillators , 2000 .

[63]  F. Mokross,et al.  Comments on the diatomic Toda lattice , 1981 .

[64]  Haitao Xu,et al.  Traveling Waves for the Mass in Mass Model of Granular Chains , 2015 .

[65]  John P. Boyd A numerical calculation of a weakly non-local solitary wave: the φ 4 breather , 1990 .

[66]  Mason A. Porter,et al.  Fermi, Pasta, Ulam and the Birth of Experimental Mathematics , 2009 .

[67]  Michael V Berry,et al.  Stokes’ phenomenon; smoothing a victorian discontinuity , 1988 .

[68]  Roger H.J. Grimshaw,et al.  Solitary internal waves with oscillatory tails , 1992, Journal of Fluid Mechanics.

[69]  Mason A Porter,et al.  Superdiffusive transport and energy localization in disordered granular crystals. , 2014, Physical review. E.

[70]  Wen-Xin Qin Wave Propagation in Diatomic Lattices , 2015, SIAM J. Math. Anal..

[71]  Leon A. Takhtajan,et al.  Hamiltonian methods in the theory of solitons , 1987 .

[72]  J. R. King,et al.  Exponential asymptotics and Stokes lines in nonlinear ordinary differential equations , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[73]  J. Douglas Wright,et al.  Exact Diatomic Fermi-Pasta-Ulam-Tsingou Solitary Waves with Optical Band Ripples at Infinity , 2015, SIAM J. Math. Anal..

[74]  Mason A Porter,et al.  Nonlinear coherent structures in granular crystals , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[75]  Takahiro Hatano Heat conduction in the diatomic Toda lattice revisited , 1999 .

[76]  David C. Calvo,et al.  On the formation of bound states by interacting nonlocal solitary waves , 1997 .

[77]  Arkady Pikovsky,et al.  Compactons and chaos in strongly nonlinear lattices. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  G. Theocharis,et al.  Wave propagation in a strongly nonlinear locally resonant granular crystal , 2017, 1709.08629.

[79]  T. Kofané,et al.  Theoretical and experimental studies of diatomic lattice solitons using an electrical transmission line , 1988 .

[80]  M. Berry,et al.  Uniform asymptotic smoothing of Stokes’s discontinuities , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[81]  Roger Grimshaw,et al.  Weakly Nonlocal Solitary Waves in a Singularly Perturbed Korteweg-De Vries Equation , 1995, SIAM J. Appl. Math..