Hydrodynamics of disturbed flow and erosion—corrosion. Part I — Single‐phase flow study

Erosion–Corrosion in turbulent, two-phase liquid/particle flow with recirculation, after a sudden pipe expansion is studied by the application of a numerical flow model along with two different erosion models. The flow model, which is based on a two-phase flow version of a standard two-equation model of turbulence and a stochastic simulation of particle-fluid turbulence interactions, is capable of successfully predicting local values of time averaged fluid velocities and turbulent fluctuations, as well as predicting particle dispersion and particle-wall interaction. The erosion models used are that of Finnie (1960) and a modified version suggested by Bergevin (1984). The agreement of the predicted and measured hydrodynamic parameters, for flow through a sudden expansion, was satisfactory. Predictions of erosion rates using Bergevin's modified model were in good agreement with the stainless steel erosion measurements for a 2% water/sand slurry flow. The erosion–corrosion model was successful in predicting the overall pattern and rates of metal loss for carbon steel. On a etudie le phenomene «erosion–corrosion» dans un ecoulement turbulent biphasique liquide/particules en recirculation apres une expansion abrupte du tuyau, a l'aide d'un modele d'ecoulement numerique et de deux modeles d'erosion differents. Le modele d'ecoulement, qui est base sur une version d'ecoulement biphasique d'un modele de turbulence a deux equations standard et une simulation stochastique d'interactions de turbulence particles-fluides, est capable de predire avec succes (1) les valeurs des debits moyens par rapport au temps et les fluctuations turbulentes et (2) la dispersion des particules et l'interaction particules-paroi. Les modeles d'erosion utilises sont ceux de Finnie (1960) et une version modifiee suggeree par Bergevin (1984). l'accord des parametres hydrodynamiques predits et mesures pour un ecoulement avec une expansion abrupte, est satisfaisant. Les predictions des vitesses d'erosion avec le modele modifie de Bergevin montrent un bon accord avec les mesures d'erosion de l'acier inoxydable pour un ecoulement d'eau/boues sablonneuses a 2%. Le modele d'erosion et de corrosion predit avec succes le modele general et les vitesses de la perte de metal pour l'acier au carbone.

[1]  A. Gosman,et al.  The Calculation of Two-Dimensional Turbulent Recirculating Flows , 1979 .

[2]  J. Postlethwaite,et al.  Erosion-corrosion in disturbed two phase liquid/particle flow , 1990 .

[3]  Ewald Heitz,et al.  Zum Mechanismus der Erosionskorrosion in schnell strömenden Flüssigkeiten , 1973 .

[4]  D. C. Silverman Rotating Cylinder Electrode for Velocity Sensitivity Testing , 1984 .

[5]  Ewald Heitz,et al.  The Influence of Hydrodynamics on Erosion-Corrosion in Two-Phase Liquid-Particle Flow , 1989 .

[6]  J. Bitter A study of erosion phenomena part I , 1963 .

[7]  Wolfgang Nitsche,et al.  Experimental investigation of the flow through axisymmetric expansions , 1989 .

[8]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[9]  F. Pourahmadi,et al.  Modelling solid-fluid turbulent flows with application to predicting erosive wear , 1983 .

[10]  J. Postlethwaite,et al.  Mass transfer at erosion-corrosion roughened surfaces , 1988 .

[11]  W. H. Stevenson,et al.  Radial and Axial Turbulent Flow Measurements With an LDV in an Axisymmetric Sudden Expansion Air Flow , 1988 .

[12]  W. Jones,et al.  The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence , 1973 .

[13]  I. Finnie Erosion of surfaces by solid particles , 1960 .

[14]  F. Durst,et al.  Eulerian and Lagrangian predictions of particulate two phase flows , 1984 .

[15]  H. Copson Effects of Velocity on Corrosion , 1960 .

[16]  T. Sydberger,et al.  Relation Between Mass Transfer and Corrosion in a Turbulent Pipe Flow , 1982 .

[17]  P. Chassaing,et al.  Perturbations of Turbulent Pipe Flow , 1979 .

[18]  K. D. Efird Effect of Fluid Dynamics on the Corrosion of Copper-Base Alloys in Sea Water , 1977 .

[19]  K. Bergevin,et al.  The Role of Oxygen Mass Transfer in the Erosion-Corrosion of Slurry Pipelines , 1986 .

[20]  H. Mongia,et al.  Evolution of particle-laden jet flows - A theoretical and experimental study , 1989 .

[21]  Barry C. Syrett,et al.  Erosion-Corrosion of Copper-Nickel Alloys in Sea Water and Other Aqueous Environments—A Literature Review , 1976 .

[22]  Hector Iacovides,et al.  PSL—An Economical Approach to the Numerical Analysis of Near-Wall, Elliptic Flow , 1984 .

[23]  C. Yap Turbulent heat and momentum transfer in recirculating and impinging flows , 1987 .

[24]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[25]  Bodo Ruck,et al.  Particle dispersion in a single-sided backward-facing step flow , 1988 .

[26]  Yoshinobu Morikawa,et al.  Measurement of an axisymmetric jet laden with coarse particles , 1988 .

[27]  B. Mahato,et al.  Steel pipe corrosion under flowconditions—I. An isothermal correlation for a mass transfer model , 1968 .

[28]  W. H. Stevenson,et al.  Investigation of turbulent transport in an axisymmetric sudden expansion , 1990 .

[29]  L. Back,et al.  Shear-Layer Flow Regimes and Wave Instabilities and Reattachment Lengths Downstream of an Abrupt Circular Channel Expansion , 1972 .