Higher-derivative-corrected black holes: perturbative stability and absorption cross section in heterotic string theory

This work addresses spherically symmetric, static black holes in higher-derivative stringy gravity. We focus on the curvature-squared correction to the Einstein–Hilbert action, present in both heterotic and bosonic string theories. The string theory low-energy effective action necessarily describes both a graviton and a dilaton, and we concentrate on the Callan–Myers–Perry solution in d-dimensions, describing stringy corrections to the Schwarzschild geometry. We develop the perturbation theory for the higher-derivative-corrected action, along the guidelines of the Ishibashi–Kodama framework, focusing on tensor-type gravitational perturbations. The potential obtained allows us to address the perturbative stability of the black hole solution, where we prove stability in any dimension. The equation describing gravitational perturbations to the Callan–Myers–Perry geometry also allows for a study of greybody factors and quasinormal frequencies. We address gravitational scattering at low frequencies, computing corrections arising from the curvature-squared term in the stringy action. We find that the absorption cross section receives α′-corrections, even though it is still proportional to the area of the black hole event horizon. We also suggest an expression for the absorption cross section which could be valid to all orders in α′.

[1]  José Natário,et al.  Greybody Factors for d-Dimensional Black Holes , 2007, 0708.0017.

[2]  S. Chakrabarti Quasinormal modes for tensorial perturbation of Gauss Bonnet black holes using third order WKB approach , 2006 .

[3]  S. Chakrabarti,et al.  Asymptotic Quasinormal Modes of d-Dimensional Schwarzschild Black Hole with Gauss-Bonnet Correction , 2005, hep-th/0506133.

[4]  Gustavo Dotti,et al.  Linear stability of Einstein-Gauss-Bonnet static spacetimes : Vector and scalar perturbations , 2005, gr-qc/0510069.

[5]  A. Barrau,et al.  Exact results for evaporating black holes in curvature-squared lovelock gravity: Gauss-Bonnet greybody factors , 2005, hep-th/0509128.

[6]  E. Abdalla,et al.  Scalar field evolution in Gauss-Bonnet black holes , 2005, hep-th/0507100.

[7]  Microscopic black hole entropy in theories with higher derivatives , 2005, hep-th/0506176.

[8]  S. Chakrabarti,et al.  Asymptotic Quasinormal Modes of Gauss-Bonnet Black Hole in String Derived Gravity , 2005 .

[9]  Gustavo Dotti,et al.  Linear stability of Einstein-Gauss-Bonnet static spacetimes: Tensor perturbations , 2005, gr-qc/0503117.

[10]  R. Konoplya Quasinormal modes of the charged black hole in Gauss-Bonnet gravity , 2004, hep-th/0410057.

[11]  A. Dabholkar Exact Counting of Supersymmetric Black Hole Microstates , 2004, hep-th/0409148.

[12]  L. Susskind,et al.  Charged Black Holes , 2004 .

[13]  José Natário,et al.  On the classification of asymptotic quasinormal frequencies for $d$-dimensional black holes and quantum gravity , 2004, hep-th/0411267.

[14]  A. Dabholkar Exact Counting of Black Hole Microsates , 2004 .

[15]  R. Kallosh,et al.  A stringy cloak for a classical singularity , 2004, hep-th/0410076.

[16]  Gustavo Dotti,et al.  Gravitational instability of Einstein–Gauss–Bonnet black holes under tensor mode perturbations , 2004, gr-qc/0409005.

[17]  V. Cardoso,et al.  Asymptotic quasinormal frequencies for black holes in nonasymptotically flat space¿times , 2004, hep-th/0403132.

[18]  K. Stelle,et al.  Higher-order corrections to non-compact Calabi-Yau manifolds in string theory , 2003, hep-th/0311018.

[19]  H. Kodama,et al.  Master Equations for Perturbations of Generalised Static Black Holes with Charge in Higher Dimensions , 2003, hep-th/0308128.

[20]  Harish-Chandra,et al.  How Does a Fundamental String Stretch its Horizon ? , 2004 .

[21]  H. Kodama,et al.  Stability of Generalised Static Black Holes in Higher Dimensions , 2003, gr-qc/0312012.

[22]  H. Kodama,et al.  Stability of Higher-Dimensional Schwarzschild Black Holes , 2003, hep-th/0305185.

[23]  H. Kodama,et al.  A Master Equation for Gravitational Perturbations of Maximally Symmetric Black Holes in Higher Dimensions , 2003, hep-th/0305147.

[24]  L. Motl,et al.  Asymptotic black hole quasinormal frequencies , 2003, hep-th/0301173.

[25]  I. Neupane Black hole entropy in string-generated gravity models , 2002, hep-th/0212092.

[26]  S. Hartnoll,et al.  A Gravitational instability in higher dimensions , 2002, hep-th/0206202.

[27]  S. Nojiri,et al.  (Anti–)de Sitter black holes in higher derivative gravity and dual conformal field theories , 2002, hep-th/0204112.

[28]  G. Cardoso,et al.  Stationary BPS Solutions in N=2 Supergravity with R^2-Interactions , 2000, hep-th/0009234.

[29]  H. Kodama,et al.  Brane world cosmology: Gauge invariant formalism for perturbation , 2000, hep-th/0004160.

[30]  C. Hull BPS supermultiplets in five dimensions , 2000, hep-th/0004086.

[31]  H. Nollert Quasinormal modes: the characteristic `sound' of black holes and neutron stars , 1999 .

[32]  Kostas D. Kokkotas,et al.  Quasi-Normal Modes of Stars and Black Holes , 1999, Living reviews in relativity.

[33]  G. Cardoso,et al.  Corrections to macroscopic supersymmetric black-hole entropy , 1998, hep-th/9812082.

[34]  R. Myers Black Holes in Higher Curvature Gravity , 1998, gr-qc/9811042.

[35]  K. Maeda,et al.  Stability of a dilatonic black hole with a Gauss-Bonnet term , 1998 .

[36]  G. Gibbons,et al.  Universality of low-energy absorption cross-sections for black holes , 1996, hep-th/9609052.

[37]  P. Kanti,et al.  Coloured Black Holes in Higher Curvature String Gravity , 1996, hep-th/9609003.

[38]  N. Mavromatos,et al.  Dilatonic black holes in higher curvature string gravity. , 1996, Physical review. D, Particles and fields.

[39]  I. Bengtsson,et al.  Making anti-de Sitter black holes , 1996, gr-qc/9604005.

[40]  Jacobson,et al.  On black hole entropy. , 1993, Physical review. D, Particles and fields.

[41]  R. Wald,et al.  Black hole entropy is Noether charge. , 1993, Physical review. D, Particles and fields.

[42]  Stewart,et al.  Charged black holes in effective string theory. , 1992, Physical review. D, Particles and fields.

[43]  E. Witten On black holes in string theory , 1991, hep-th/9111052.

[44]  Bizon,et al.  Colored black holes. , 1990, Physical review letters.

[45]  B. Iyer,et al.  Scalar Waves in the Boulware-deser Black Hole Background , 1989 .

[46]  E. Bergshoeff,et al.  The quartic effective action of the heterotic string and supersymmetry , 1989 .

[47]  R. Myers Superstring gravity and black holes , 1987 .

[48]  C. Callan,et al.  String theory effective actions , 1986 .

[49]  R. Myers,et al.  Black holes in higher dimensional space-times , 1986 .

[50]  A. Sen,et al.  Conformal invariance of supersymmetric σ-models on Calabi-Yau manifolds , 1986 .

[51]  A. Sen Central charge of the Virasoro algebra for supersymmetric sigma models on Calabi-Yau manifolds , 1986 .

[52]  M. Grisaru,et al.  Sigma-model superstring corrections to the Einstein-Hilbert action , 1986 .

[53]  S. Deser,et al.  Effective gravity theories with dilations , 1986 .

[54]  M. Grisaru,et al.  Four-Loop β-Function for the N = 1 And N = 2 Supersymmetric Non-Linear Sigma Model In Two Dimensions , 1986 .

[55]  M. Grisaru,et al.  Four-loop divergences for the N=1 supersymmetric non-linear sigma-model in two dimensions , 1986 .

[56]  D. Gross,et al.  Superstring Modifications of Einstein's Equations , 1986 .

[57]  M. Grisaru,et al.  Two-dimensional supersymmetric sigma-models on Ricci-flat Kähler manifolds are not finite , 1986 .

[58]  S. Deser,et al.  String-generated gravity models. , 1985, Physical review letters.

[59]  B. Zwiebach Curvature Squared Terms and String Theories , 1985 .

[60]  York,et al.  Black hole in thermal equilibrium with a scalar field: The back-reaction. , 1985, Physical review. D, Particles and fields.

[61]  E. Witten,et al.  Vacuum configurations for superstrings , 1985 .

[62]  W. Unruh Absorption Cross-Section of Small Black Holes , 1976 .

[63]  F. Zerilli Gravitational field of a particle falling in a schwarzschild geometry analyzed in tensor harmonics , 1969 .

[64]  John Archibald Wheeler,et al.  Stability of a Schwarzschild singularity , 1957 .