Multivariate FX Models with Jumps: Triangles, Quantos and Implied Correlation

We propose an integrated model of the joint dynamics of FX rates and asset prices for the pricing of FX derivatives, including Quanto products; the model is based on a multivariate construction for Levy processes which proves to be analytically tractable. The approach allows for simultaneous calibration to market volatility surfaces of currency triangles, and also gives access to market consistent information on dependence between the relevant variables. A successful joint calibration to real market data is presented for the particular case of the Variance Gamma process.

[1]  R. Lord,et al.  A Fast and Accurate FFT-Based Method for Pricing Early-Exercise Options Under Levy Processes , 2007 .

[2]  W. Jäger,et al.  Mathematics – key technology for the future , 2003 .

[3]  America Merrill Lynch,et al.  Credit value adjustment for credit default swaps via the structural default model , 2009 .

[4]  R. Schilling Financial Modelling with Jump Processes , 2005 .

[5]  P. Tankov Lévy Processes in Finance: Inverse Problems and Dependence Modelling , 2004 .

[6]  E. Luciano,et al.  Dependence Calibration and Portfolio Fit with Factor-based Time Changes , 2014 .

[7]  Albert N. Shiryaev,et al.  Change of time and change of measure , 2010 .

[8]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[9]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[10]  Quanto Adjustments in the Presence of Stochastic Volatility , 2012 .

[11]  Dong Hwan Oh,et al.  Modeling Dependence in High Dimensions With Factor Copulas , 2015 .

[12]  P. Carr,et al.  Stochastic Skew in Currency Options , 2004 .

[13]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[14]  Matthias Muck,et al.  Keep on smiling? The pricing of Quanto options when all covariances are stochastic , 2012 .

[15]  Frank J. Fabozzi,et al.  An improved method for pricing and hedging long dated American options , 2016, Eur. J. Oper. Res..

[16]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[17]  L. Ballotta,et al.  Multivariate asset models using Lévy processes and applications , 2012 .

[18]  Ernst Eberlein,et al.  A cross-currency Lévy market model , 2006 .

[19]  Alessandro Gnoatto,et al.  Smiles All Around: FX Joint Calibration in a Multi-Heston Model , 2012, 1201.1782.

[20]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[21]  G. Deelstra,et al.  Vanna-Volga Methods Applied to FX Derivatives: From Theory to Market Practice , 2009, 0904.1074.

[22]  E. Eberlein Fourier-Based Valuation Methods in Mathematical Finance , 2014 .

[23]  A. Shiryaev,et al.  Esscher transform and the duality principle for multidimensional semimartingales , 2008, 0809.0301.

[24]  Thomas Nitschka,et al.  Foreign Currency Returns and Systematic Risks , 2015 .

[25]  Claudio Tebaldi,et al.  Option pricing when correlations are stochastic: an analytical framework , 2006 .

[26]  Giacomo Scandolo,et al.  Assessing Financial Model Risk , 2013, Eur. J. Oper. Res..

[27]  E. Luciano,et al.  Dependence calibration and portfolio fit with factor-based subordinators , 2016 .

[28]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[29]  A. Lipton,et al.  Credit Value Adjustment for Credit Default Swaps via the Structural Default Model , 2009 .

[30]  C. Tebaldi,et al.  Option pricing with Correlation Risk , 2007 .

[31]  Jean-Charles Rochet,et al.  Changes of numéraire, changes of probability measure and option pricing , 1995, Journal of Applied Probability.

[32]  T. L. Chan An SFP–FCC method for pricing and hedging early-exercise options under Lévy processes , 2019, Quantitative Finance.

[33]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[34]  E. Eberlein,et al.  New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model , 1998 .

[35]  Hans U. Gerber,et al.  Option pricing by Esscher transforms. , 1995 .

[36]  Guillaume Coqueret,et al.  An Investigation of Model Risk in a Market with Jumps and Stochastic Volatility , 2016, Eur. J. Oper. Res..

[37]  Gianluca Fusai,et al.  Counterparty Credit Risk in a Multivariate Structural Model with Jumps , 2014 .

[38]  Advanced credit portfolio modeling and CDO pricing , 2008 .

[39]  Cornelis W. Oosterlee,et al.  Pricing early-exercise and discrete barrier options by fourier-cosine series expansions , 2009, Numerische Mathematik.

[40]  Andrey Itkin,et al.  Efficient solution of structural default models with correlated jumps and mutual obligations , 2014, Int. J. Comput. Math..