Resolution of Brassicaceae Phylogeny Using Nuclear Genes Uncovers Nested Radiations and Supports Convergent Morphological Evolution

Brassicaceae is one of the most diverse and economically valuable angiosperm families with widely cultivated vegetable crops and scientifically important model plants, such as Arabidopsis thaliana. The evolutionary history, ecological, morphological, and genetic diversity, and abundant resources and knowledge of Brassicaceae make it an excellent model family for evolutionary studies. Recent phylogenetic analyses of the family revealed three major lineages (I, II, and III), but relationships among and within these lineages remain largely unclear. Here, we present a highly supported phylogeny with six major clades using nuclear markers from newly sequenced transcriptomes of 32 Brassicaceae species and large data sets from additional taxa for a total of 55 species spanning 29 out of 51 tribes. Clade A consisting of Lineage I and Macropodium nivale is sister to combined Clade B (with Lineage II and others) and a new Clade C. The ABC clade is sister to Clade D with species previously weakly associated with Lineage II and Clade E (Lineage III) is sister to the ABCD clade. Clade F (the tribe Aethionemeae) is sister to the remainder of the entire family. Molecular clock estimation reveals an early radiation of major clades near or shortly after the Eocene–Oligocene boundary and subsequent nested divergences of several tribes of the previously polytomous Expanded Lineage II. Reconstruction of ancestral morphological states during the Brassicaceae evolution indicates prevalent parallel (convergent) evolution of several traits over deep times across the entire family. These results form a foundation for future evolutionary analyses of structures and functions across Brassicaceae.

[1]  M. Koch,et al.  A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History[OPEN] , 2015, Plant Cell.

[2]  S. Magallón,et al.  A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. , 2015, The New phytologist.

[3]  Yinlong Xie,et al.  Dissecting Molecular Evolution in the Highly Diverse Plant Clade Caryophyllales Using Transcriptome Sequencing , 2015, Molecular biology and evolution.

[4]  Michael S. Barker,et al.  The butterfly plant arms-race escalated by gene and genome duplications , 2014, Proceedings of the National Academy of Sciences.

[5]  F. Fornara,et al.  Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals. , 2014, Annals of botany.

[6]  Saravanaraj N. Ayyampalayam,et al.  Phylotranscriptomic analysis of the origin and early diversification of land plants , 2014, Proceedings of the National Academy of Sciences.

[7]  Hong Ma,et al.  Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times , 2014, Nature Communications.

[8]  Tandy J. Warnow,et al.  ASTRAL: genome-scale coalescent-based species tree estimation , 2014, Bioinform..

[9]  Hyeran Kim,et al.  Functional innovations of three chronological mesohexaploid Brassica rapa genomes , 2014, BMC Genomics.

[10]  Wayne E. Clarke,et al.  Polyploid Evolution of the Brassicaceae during the Cenozoic Era[C][W][OPEN] , 2014, Plant Cell.

[11]  X. Vekemans,et al.  The evolution of selfing from outcrossing ancestors in Brassicaceae: what have we learned from variation at the S‐locus? , 2014, Journal of evolutionary biology.

[12]  I. Al‐Shehbaz,et al.  Systematics, Tribal Placements, and Synopses of the Malcolmia S.L. Segregates (Brassicaceae) , 2014 .

[13]  Kun Lu,et al.  The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes , 2014, Nature Communications.

[14]  M. Aarts,et al.  Comparative transcriptome analysis of the metal hyperaccumulator Noccaea caerulescens , 2014, Front. Plant Sci..

[15]  T. Struck,et al.  TreSpEx—Detection of Misleading Signal in Phylogenetic Reconstructions Based on Tree Information , 2014, Evolutionary bioinformatics online.

[16]  D. A. German,et al.  Shehbazia (Shehbazieae, Cruciferae) – новый монотипный род и триба гибридного происхождения из Тибета , 2014 .

[17]  D. A. German,et al.  Shehbazia (Shehbazieae, Cruciferae), a new monotypic genus and tribe of hybrid origin from Tibet Shehbazia (Shehbazieae, Cruciferae) - новый монотипный род и триба гибридного происхождения из Тибета , 2014 .

[18]  A. Stamatakis,et al.  BrassiBase: introduction to a novel knowledge database on Brassicaceae evolution. , 2014, Plant & cell physiology.

[19]  Catherine A. Rushworth,et al.  The evolution of quantitative traits in complex environments , 2013, Heredity.

[20]  J. J. Jansen,et al.  An ecogenomic analysis of herbivore‐induced plant volatiles in Brassica juncea , 2013, Molecular ecology.

[21]  M. Koch,et al.  A world-wide perspective on crucifer speciation and evolution: phylogenetics, biogeography and trait evolution in tribe Arabideae. , 2013, Annals of botany.

[22]  Likai Mao,et al.  Transcriptome Sequences Resolve Deep Relationships of the Grape Family , 2013, PloS one.

[23]  Alan M. Moses,et al.  An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions , 2013, Nature Genetics.

[24]  N. Verbruggen,et al.  Tolerance to cadmium in plants: the special case of hyperaccumulators , 2013, BioMetals.

[25]  Mathieu Blanchette,et al.  The Capsella rubella genome and the genomic consequences of rapid mating system evolution , 2013, Nature Genetics.

[26]  H. Kong,et al.  Disruption of the petal identity gene APETALA3-3 is highly correlated with loss of petals within the buttercup family (Ranunculaceae) , 2013, Proceedings of the National Academy of Sciences.

[27]  J. Wen,et al.  Reprint of: using nuclear gene data for plant phylogenetics: progress and prospects. , 2013, Molecular phylogenetics and evolution.

[28]  Meyer Claire-Lise,et al.  The use of the model species Arabidopsis halleri towards phytoextraction of cadmium polluted soils. , 2012, New biotechnology.

[29]  J. Wen,et al.  Using nuclear gene data for plant phylogenetics: progress and prospects. , 2012, Molecular phylogenetics and evolution.

[30]  I. Al‐Shehbaz,et al.  BrassiBase: Tools and biological resources to study characters and traits in the Brassicaceae—version 1.1 , 2012 .

[31]  I. Al‐Shehbaz,et al.  A generic and tribal synopsis of the Brassicaceae (Cruciferae) , 2012 .

[32]  Hong Ma,et al.  Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms. , 2012, The New phytologist.

[33]  Jun Wang,et al.  Insights into salt tolerance from the genome of Thellungiella salsuginea , 2012, Proceedings of the National Academy of Sciences.

[34]  M. Koch Mid‐Miocene divergence of Ionopsidium and Cochlearia and its impact on the systematics and biogeography of the tribe Cochlearieae (Brassicaceae) , 2012 .

[35]  Hong Ma,et al.  The Use of Low-copy Nuclear Genes for Reconstructing the Phylogeny of Low-level Taxonomic Hierarchies: Evidence from Brassicaceae , 2012 .

[36]  Catherine A. Rushworth,et al.  Boechera, a model system for ecological genomics , 2011, Molecular ecology.

[37]  H. Bohnert,et al.  The genome of the extremophile crucifer Thellungiella parvula , 2011, Nature Genetics.

[38]  H. Kong,et al.  Petal-specific subfunctionalization of an APETALA3 paralog in the Ranunculales and its implications for petal evolution. , 2011, The New phytologist.

[39]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[40]  Klaas Vandepoele,et al.  Comparative Network Analysis Reveals That Tissue Specificity and Gene Function Are Important Factors Influencing the Mode of Expression Evolution in Arabidopsis and Rice1[W] , 2011, Plant Physiology.

[41]  Richard M. Clark,et al.  The Arabidopsis lyrata genome sequence and the basis of rapid genome size change , 2011, Nature Genetics.

[42]  I. Al‐Shehbaz,et al.  Cabbage family affairs: the evolutionary history of Brassicaceae. , 2011, Trends in plant science.

[43]  M. Lysak,et al.  Island species radiation and karyotypic stasis in Pachycladon allopolyploids , 2010, BMC Evolutionary Biology.

[44]  M. Clements,et al.  Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana , 2010, Proceedings of the National Academy of Sciences.

[45]  Jianbo Wang,et al.  Analysis of phylogenetic relationships of Brassicaceae species based on Chs sequences , 2010 .

[46]  Martin Krzywinski,et al.  Fast Diploidization in Close Mesopolyploid Relatives of Arabidopsis[W][OA] , 2010, Plant Cell.

[47]  Haibao Tang,et al.  Insights from the comparison of plant genome sequences. , 2010, Annual review of plant biology.

[48]  S. Warwick,et al.  Closing the gaps: phylogenetic relationships in the Brassicaceae based on DNA sequence data of nuclear ribosomal ITS region , 2010, Plant Systematics and Evolution.

[49]  M. Donoghue,et al.  An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants , 2010, Proceedings of the National Academy of Sciences.

[50]  S. Manchester,et al.  Phylogenetic Distribution and Identification of Fin-winged Fruits , 2010, The Botanical Review.

[51]  O. Gascuel,et al.  SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. , 2010, Molecular biology and evolution.

[52]  F. Bakker,et al.  Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae). , 2010, Molecular biology and evolution.

[53]  Félix Forest,et al.  Calibrating the Tree of Life: fossils, molecules and evolutionary timescales. , 2009, Annals of botany.

[54]  I. Al‐Shehbaz,et al.  Contribution to ITS phylogeny of the Brassicaceae, with special reference to some Asian taxa , 2009, Plant Systematics and Evolution.

[55]  R. Amasino Floral induction and monocarpic versus polycarpic life histories , 2009, Genome Biology.

[56]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[57]  P. Lockhart,et al.  A Pleistocene inter-tribal allopolyploidization event precedes the species radiation of Pachycladon (Brassicaceae) in New Zealand. , 2009, Molecular phylogenetics and evolution.

[58]  I. Al‐Shehbaz,et al.  Arabidopsis family ties: molecular phylogeny and age estimates in Brassicaceae , 2009 .

[59]  S. Mohsenzadeh,et al.  Phylogenetic relationships of Old World Brassicaceae from Iran based on nuclear ribosomal DNA sequences , 2009 .

[60]  G. Theißen,et al.  Lepidium as a model system for studying the evolution of fruit development in Brassicaceae. , 2009, Journal of experimental botany.

[61]  R. Pennington,et al.  Woody Plant Diversity, Evolution, and Ecology in the Tropics: Perspectives from Seasonally Dry Tropical Forests , 2009 .

[62]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[63]  R. Flavell Role of model plant species. , 2009, Methods in molecular biology.

[64]  S. Magallón,et al.  Angiosperm diversification through time. , 2009, American journal of botany.

[65]  Ingo Ebersberger,et al.  HaMStR: Profile hidden markov model based search for orthologs in ESTs , 2009, BMC Evolutionary Biology.

[66]  E. Kellogg,et al.  Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. , 2008, American journal of botany.

[67]  M. Lysak,et al.  Chromosomal Phylogeny and Karyotype Evolution in x=7 Crucifer Species (Brassicaceae)[W] , 2008, The Plant Cell Online.

[68]  Tae-Kun Seo Calculating bootstrap probabilities of phylogeny using multilocus sequence data. , 2008, Molecular biology and evolution.

[69]  James C. Wilgenbusch,et al.  AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics , 2008, Bioinform..

[70]  Gerald R. Dickens,et al.  An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics , 2008, Nature.

[71]  Leo J. Hickey,et al.  Early cretaceous fossil evidence for angiosperm evolution , 2008, The Botanical Review.

[72]  W. Werr,et al.  The evolution of plant regulatory networks: what Arabidopsis cannot say for itself. , 2007, Current opinion in plant biology.

[73]  C. Kiefer,et al.  Supernetwork identifies multiple events of plastid trnF(GAA) pseudogene evolution in the Brassicaceae. , 2007, Molecular biology and evolution.

[74]  Charles James Nice Bailey,et al.  Toward a global phylogeny of the Brassicaceae. , 2006, Molecular biology and evolution.

[75]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[76]  E. Kellogg,et al.  Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview , 2006, Plant Systematics and Evolution.

[77]  G. Blanc,et al.  History, protohistory and prehistory of the Arabidopsis thaliana chromosome complement. , 2006, Trends in plant science.

[78]  Thomas Mitchell-Olds,et al.  Independent Ancient Polyploidy Events in the Sister Families Brassicaceae and Cleomaceae[W] , 2006, The Plant Cell Online.

[79]  E. Kellogg,et al.  Brassicaceae phylogeny and trichome evolution. , 2006, American journal of botany.

[80]  H. Bohnert,et al.  Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. , 2005, The Plant journal : for cell and molecular biology.

[81]  M. Koch,et al.  Chromosome triplication found across the tribe Brassiceae. , 2005, Genome research.

[82]  M. Koch,et al.  Molecular phylogenetics ofCochlearia (Brassicaceae) and allied genera based on nuclear ribosomal ITS DNA sequence analysis contradict traditional concepts of their evolutionary relationship , 1999, Plant Systematics and Evolution.

[83]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[84]  Martin Hülskamp,et al.  Plant trichomes: a model for cell differentiation , 2004, Nature Reviews Molecular Cell Biology.

[85]  M. Collinson,et al.  Eocene–Oligocene mammalian faunal turnover in the Hampshire Basin, UK: calibration to the global time scale and the major cooling event , 2004, Journal of the Geological Society.

[86]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[87]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[88]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[89]  John Quackenbush,et al.  TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets , 2003, Bioinform..

[90]  Michael J. Sanderson,et al.  R8s: Inferring Absolute Rates of Molecular Evolution, Divergence times in the Absence of a Molecular Clock , 2003, Bioinform..

[91]  J. Bowman,et al.  Allopolyploidization and evolution of species with reduced floral structures in Lepidium L. (Brassicaceae) , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Klaas Vandepoele,et al.  The hidden duplication past of Arabidopsis thaliana , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Thomas Mitchell-Olds,et al.  Plant evolutionary genomics. , 2002, Current opinion in plant biology.

[94]  M. Sanderson Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. , 2002, Molecular biology and evolution.

[95]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[96]  Jennifer L. Nemhauser,et al.  In: The Arabidopsis Book , 2002 .

[97]  Masami Hasegawa,et al.  CONSEL: for assessing the confidence of phylogenetic tree selection , 2001, Bioinform..

[98]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[99]  T. Mitchell-Olds,et al.  Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. , 2001, American journal of botany.

[100]  D. G. Brown,et al.  The origins of genomic duplications in Arabidopsis. , 2000, Science.

[101]  M. A. Koch,et al.  Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). , 2000, Molecular biology and evolution.

[102]  U. Folkers,et al.  Trichome morphogenesis in Arabidopsis. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[103]  M. Hülskamp Cell morphogenesis: How plants split hairs , 2000, Current Biology.

[104]  R. Morley Origin and Evolution of Tropical Rain Forests , 2000 .

[105]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[106]  I. Al‐Shehbaz,et al.  Generic placement of species excluded from Arabidopsis (Brassicaceae) , 1999 .

[107]  L. Jacobs,et al.  The Origin of Grass-Dominated Ecosystems , 1999 .

[108]  K. Devos,et al.  Plant comparative genetics after 10 years. , 1998, Science.

[109]  J. Cherry,et al.  Arabidopsis thaliana: a model plant for genome analysis. , 1998, Science.

[110]  S. Stanley,et al.  Earth System History , 1998 .

[111]  M. Koch,et al.  ISOZYMES, SPECIATION AND EVOLUTION IN THE POLYPLOID COMPLEX COCHLEARIA L. (BRASSICACEAE) , 1998 .

[112]  M. Gandolfo,et al.  A new fossil flower from the Turonian of New Jersey: Dressiantha bicarpellata gen. et sp. nov. (Capparales). , 1998, American journal of botany.

[113]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[114]  M. Koch,et al.  Molecular data reveal convergence in fruit characters used in the classification of Thlaspi s. l. (Brassicaceae) , 1997 .

[115]  S. Schmid,et al.  Geophysical‐geological transect and tectonic evolution of the Swiss‐Italian Alps , 1996 .

[116]  J. Ohnishi,et al.  Arabidopsis , 2008, Springer New York.

[117]  D. Blundell,et al.  A Continent revealed : the European Geotraverse , 1992 .

[118]  S. Wing Eocene and Oligocene Floras and Vegetation of the Rocky Mountains , 1987 .

[119]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .

[120]  J. Vaughan,et al.  The biology and chemistry of the Cruciferae , 1976 .

[121]  R. Rollins,et al.  Atlas of the trichomes of Lesquerella (Cruciferae) , 1975 .

[122]  H. Becker OLIGOCENE PLANTS FROM THE UPPER RUBY RIVER BASIN, SOUTHWESTERN MONTANA , 1961 .