Exponential and bayesian conjugate families: Review and extensions

[1]  Elías Moreno,et al.  Estimating with incomplete count data A Bayesian approach , 1998 .

[2]  Eduardo Gutiérrez-Peña,et al.  Moments for the canonical parameter of an exponential family under a conjugate distribution , 1997 .

[3]  D. Geiger,et al.  A characterization of the Dirichlet distribution through global and local parameter independence , 1997 .

[4]  Joseph B. Kadane,et al.  Priors for unit root models , 1996 .

[5]  The $2d+4$ simple quadratic natural exponential families on ${\bf R}\sp d$ , 1996 .

[6]  Adrian F. M. Smith,et al.  Conjugate Parameterizations for Natural Exponential Families , 1995 .

[7]  E. Gutiérrez-Peña Bayesian topics relating to the exponential family , 1995 .

[8]  Gérard Letac,et al.  The diagonal multivariate natural exponential families and their classification , 1994 .

[9]  G. Letac,et al.  Sampling Models which Admit a Given General Exponential Family as a Conjugate Family of Priors , 1994 .

[10]  F. J. Girón,et al.  A conjugate family for ar(1) processes with exponential errors , 1994 .

[11]  David J. Spiegelhalter,et al.  Bayesian analysis in expert systems , 1993 .

[12]  B. Arnold,et al.  Conjugate Exponential Family Priors For Exponential Family Likelihoods , 1993 .

[13]  Guido Consonni,et al.  Conjugate Priors for Exponential Families Having Quadratic Variance Functions , 1992 .

[14]  Enrique Castillo,et al.  Conditionally Specified Distributions , 1992 .

[15]  R. Magiera,et al.  Conjugate priors for exponential-type processes , 1991 .

[16]  G. Walter,et al.  Bayes Empirical Bayes Estimation for Natural Exponential Families with Quadratic Variance Functions , 1991 .

[17]  M. Casalis,et al.  Les familles exponentielles à variance quadratique homogène sont des lois de Wishart sur un cône symétrique , 1991 .

[18]  Gérard Letac,et al.  Natural Real Exponential Families with Cubic Variance Functions , 1990 .

[19]  Muriel Bonnefoy-Casalis Familles exponentielles naturelles invariantes par un groupe , 1990 .

[20]  G. Letac,et al.  Sur une propriété des familles exponentielles naturelles de variance quadratique@@@Sur une propriete des familles exponentielles naturelles de variance quadratique , 1989 .

[21]  G. Letac A characterization of the Wishart exponential families by an invariance property , 1989 .

[22]  T. Cacoullos Characterizing priors by posterior expectations in multiparameter exponential families , 1987 .

[23]  B. Jørgensen Exponential Dispersion Models , 1987 .

[24]  L. Brown Fundamentals of statistical exponential families: with applications in statistical decision theory , 1986 .

[25]  C. Morris Natural Exponential Families with Quadratic Variance Functions: Statistical Theory , 1983 .

[26]  W. J. Hall,et al.  Approximating Priors by Mixtures of Natural Conjugate Priors , 1983 .

[27]  C. Morris Natural Exponential Families with Quadratic Variance Functions , 1982 .

[28]  J. Berger Statistical Decision Theory , 1980 .

[29]  O. Barndorff-Nielsen Information and Exponential Families in Statistical Theory , 1980 .

[30]  P. Diaconis,et al.  Conjugate Priors for Exponential Families , 1979 .

[31]  A. Pogorelov The Minkowski multidimensional problem , 1978 .

[32]  T. M. O'Donovan,et al.  g2-minimax estimators in the exponential family , 1970 .

[33]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[34]  Howard Raiffa,et al.  Applied Statistical Decision Theory. , 1961 .

[35]  Eugenio Calabi,et al.  Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. , 1958 .

[36]  K. Jörgens Über die Lösungen der Differentialgleichungrt−s2=1 , 1954 .

[37]  H. Jeffreys The Theory of Probability , 1896 .