Origin of the highly elevated Pyrenean peneplain

[1] Peneplanation of mountain ranges is generally considered the result of long-term erosional processes that smooth relief and lower elevation near sea level. Therefore peneplain remnants at high elevation in mountain ranges are used to infer posttectonic surface uplift. Such an interpretation has been proposed for the Pyrenees where high-elevation, low-relief erosional surfaces rose up to more than 2000 m. Because the Pyrenean foreland basins are filled with very thick continental deposits, which have buried the early jagged landscape, we challenge this hypothesis by pointing out that relief applanation does not necessarily require elevation lowering. We propose an alternative interpretation in which piedmont aggradation of detrital sediment that comes from erosion of the high chain induces the rise of the base level of the range, therefore reducing strongly the erosive efficiency of the drainage system and resulting in the progressive smoothing of the relief. Such a process allows a high-elevation, low-relief erosional surface to develop at the scale of the range. In the Pyrenees, occurrence of high-elevation, low-relief erosional surface remnants does not imply a posttectonic uplift, but is instead due to the dissection of the initial Miocene high-elevation, low-relief surface by the recent drainage system, the erosive activity of which has been enhanced by global climate change from the late Pliocene onward.

[1]  J. Muñoz,et al.  Thrusting and foreland basin evolution in the Southern Pyrenees , 1992 .

[2]  D. Wilson,et al.  Chronology, causes and progression of the Messinian salinity crisis , 1999, Nature.

[3]  K. McClay,et al.  Syntectonic burial and post-tectonic exhumation of the southern Pyrenees foreland fold–thrust belt , 1996, Journal of the Geological Society.

[4]  W. Nijman Cyclicity and basin axis shift in a piggyback basin: towards modelling of the Eocene Tremp-Ager Basin, South Pyrenees, Spain , 1998, Geological Society, London, Special Publications.

[5]  M. Brunet The influence of the evolution of the Pyrenees on adjacent basins , 1986 .

[6]  G. Denizot Le Pliocène dans la vallée du Rhône , 1952 .

[7]  Peizhen Zhang,et al.  Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates , 2001, Nature.

[8]  L. Cabrera,et al.  Basin formation at the end of a strike-slip fault: the Cerdanya Basin (eastern Pyrenees) , 1988, Journal of the Geological Society.

[9]  L. U. D. Sitter Pliocene uplift of Tertiary mountain chains , 1952 .

[10]  J. T. Hack Studies of longitudinal stream profiles in Virginia and Maryland , 1957 .

[11]  W. R. Keefer Structural geology of the Wind River Basin, Wyoming , 1970 .

[12]  Jean‑Michel Carozza,et al.  L'escarpement de faille de la Têt est-il le résultat de la tectonique active Plio-Pléistocène ou d'une exhumation Pléistocène ? , 2004 .

[13]  G. Clauzon The Messinian Var canyon (Provence, southern France) — Paleogeographic implications , 1978 .

[14]  J. T. Hack Interpretation of erosional topography in humid temperate regions. , 1960 .

[15]  A. Maillard Structure et riftogenese du golfe de valence (mediterranee occidentale) , 1993 .

[16]  D. Kalderon,et al.  Hedgehog acts as a somatic stem cell factor in the Drosophila ovary , 2001, Nature.

[17]  E. Roca Tertiary basins of Spain: The Neogene Cerdanya and Seu d'Urgell intramontane basins (Eastern Pyrenees) , 1996 .

[18]  C. Nelson,et al.  Factors controlling late Cenozoic continental margin growth from the Ebro Delta to the western Mediterranean deep sea , 1990 .

[19]  Julien Babault Dynamique de l érosion dans les chaînes de montagnes : Influence de la sédimentation de piedmont. L'exemple des Pyrénées , 2004 .

[20]  S. Vincent The Sis palaeovalley: a record of proximal fluvial sedimentation and drainage basin development in response to Pyrenean mountain building , 2001 .

[21]  J. Muñoz,et al.  Ecors deep seismic data and balanced cross sections: Geometric constraints on the evolution of the Pyrenees , 1989 .

[22]  J. Muñoz Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section , 1992 .

[23]  N. Hovius Regular spacing of drainage outlets from linear mountain belts , 1996 .

[24]  A. Teixell Crustal structure and orogenic material budget in the west central Pyrenees , 1998 .

[25]  D. Haig,et al.  Measurement of tectonic surface uplift rate in a young collisional mountain belt , 1997, Nature.

[26]  Peter Molnar,et al.  Surface uplift, uplift of rocks, and exhumation of rocks , 1990 .

[27]  M. Granet,et al.  A tomographic study of the lithosphere beneath the Pyrenees from local and teleseismic data , 1995 .

[28]  D. García-Castellanos,et al.  Interplay between tectonics, climate, and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia) , 2003 .

[29]  P. Molnar,et al.  Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? , 1990, Nature.

[30]  D. L. Blackstone Late Cretaceous and Cenozoic History of Laramie Basin Region, Southeast Wyoming , 1975 .

[31]  P. Souquet,et al.  Tecto-sedimentary cycles and depositional sequences of the Mesozoic and Tertiary from the Pyrenees , 1986 .

[32]  R. Anderson,et al.  Pleistocene relief production in Laramide mountain ranges, western United States , 1998 .

[33]  Ian. Campbell,et al.  Glossary of Geology , 1974, Soil Science Society of America Journal.

[34]  M. Loutre,et al.  Alternate interpretation of the Messinian salinity crisis: Controversy resolved? , 1996 .

[35]  C. Nelson,et al.  Estimated post-Messinian sediment supply and sedimentation rates on the Ebro continental margin, Spain , 1990 .

[36]  K. Hsü THE ORIGIN OF THE MEDITERRANEAN EVAPORITES , 2007 .

[37]  M. Calvet Morphogenèse d'une montagne méditerranéenne : les Pyrénées orientales , 1994 .

[38]  J. Muñoz,et al.  Asymmetric exhumation across the Pyrenean orogen: implications for the tectonic evolution of a collisional orogen , 1999 .

[39]  O. Tweto Laramide (Late Cretaceous-Early Tertiary) Orogeny in the Southern Rocky Mountains , 1975 .

[40]  P. Choukroune Comment and Reply on `Quenching: An additional model for emplacement of the Iherzolite at Lers (French Pyrenees)' , 1980 .

[41]  W. Davis The Geographical Cycle , 1899 .

[42]  W. Ryan Quantitative evaluation of the depth of the western Mediterranean before, during and after the Late Miocene salinity crisis , 1976 .

[43]  M. Cita,et al.  The Origin of the Mediterranean Evaporite , 1973 .

[44]  I. S. Chumakov 44.3. PLIOCENE AND PLEISTOCENE DEPOSITS OF THE NILE VALLEY IN NUBIA AND UPPER EGYPT , 2007 .

[45]  S. Willett,et al.  On steady states in mountain belts , 2002 .

[46]  G. R. Scott Cenozoic Surfaces and Deposits in the Southern Rocky Mountains , 1975 .

[47]  M. Field,et al.  Pliocene-Pleistocene growth of the Rio Ebro margin, northeast Spain: A prograding-slope model , 1990 .

[48]  P. Vacher,et al.  A three-dimensional model of the Pyrenean deep structure based on gravity modelling, seismic images and petrological constraints , 2001 .

[49]  H. Millán,et al.  Eastern Pyrenees and related foreland basins: pre-, syn- and post-collisional crustal-scale cross-sections , 1995 .

[50]  P. Calsteren,et al.  Comment and Reply on ‘Quenching: An additional model for emplacement of the Iherzolite at Lers (French Pyrenees)’ , 1980 .

[51]  P. Choukroune The Ecors Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt , 1989 .

[52]  J. Flint Stream gradient as a function of order, magnitude, and discharge , 1974 .

[53]  F. Ahnert,et al.  Local relief and the height limits of mountain ranges , 1984 .