Industrial Symbiosis in the Biofuel Industry : Quantification of the Environmental Performance and Identification of Synergies

The production of biofuels has increased in recent years, to reduce the dependence on fossil fuels and mitigate climate change. However, current production practices are heavily criticized on their ...

[1]  G. Timilsina,et al.  How much hope should we have for biofuels , 2011 .

[2]  Ewa Liwarska-Bizukojc,et al.  The conceptual model of an eco-industrial park based upon ecological relationships , 2009 .

[3]  Tim Eggeman,et al.  The importance of utility systems in today's biorefineries and a vision for tomorrow , 2006, Applied biochemistry and biotechnology.

[4]  Bo Pedersen Weidema,et al.  Marginal production technologies for life cycle inventories , 1999 .

[5]  Mikael Lantz,et al.  Livscykelanalys av svenska biodrivmedel , 2010 .

[6]  Åsa Moberg,et al.  Assessment of media and communication from a sustainability perspective , 2010 .

[7]  E. Jelsøe,et al.  Soy production and certification: the case of Argentinean soy-based biodiesel , 2010 .

[8]  Ester van der Voet,et al.  Life-cycle assessment of biofuels, convergence and divergence , 2010 .

[9]  Loren Isom,et al.  Adding value to carbon dioxide from ethanol fermentations. , 2010, Bioresource technology.

[10]  Murat Mirata,et al.  Experiences from early stages of a national industrial symbiosis programme in the UK: determinants and coordination challenges , 2004 .

[11]  Leo Baas,et al.  The introduction and dissemination of the industrial symbiosis projects in the Rotterdam Harbour and Industry Complex , 2007 .

[12]  M. Eklund,et al.  Who gets the benefits? : An approach for assessing the environmentalperformance of industrial symbiosis , 2015 .

[13]  Francesco Cherubini,et al.  Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations , 2009 .

[14]  Murat Mirata,et al.  Industrial symbiosis for more sustainable, localised industrial systems , 2007 .

[15]  Reinout Heijungs,et al.  Lights and shadows in consequential LCA , 2012, The International Journal of Life Cycle Assessment.

[16]  Michael Martin,et al.  Upcycling wastes with biogas production: An exergy and economic analysis , 2012 .

[17]  Marian R Chertow,et al.  Quantifying life cycle environmental benefits from the reuse of industrial materials in Pennsylvania. , 2009, Environmental science & technology.

[18]  Michael Obersteiner,et al.  Supporting Online Material for Fixing a Critical Climate Accounting Error , 2009 .

[19]  D. Just,et al.  The Welfare Economics of a Biofuel Tax Credit and the Interaction Effects with Price Contingent Farm Subsidies , 2009 .

[20]  Laura Sokka,et al.  Local systems, global impacts : Using life cycle assessment to analyse the potential and constraints of industrial symbioses , 2011 .

[21]  Frank Boons,et al.  Industrial Ecology as a Cultural Phenomenon: On Objectivity as a Normative Position , 2000 .

[22]  Magnus Karlsson,et al.  Evaluating the environmental benefits of industrial symbiosis: discussion and demonstration of a new approach , 2008 .

[23]  Claudia Gallert,et al.  Co-digestion of press water and food waste in a biowaste digester for improvement of biogas production. , 2010, Bioresource technology.

[24]  N. E. Gallopoulos,et al.  Strategies for Manufacturing , 1989 .

[25]  Anne-Marie Tillman,et al.  Significance of decision-making for LCA methodology , 2000 .

[26]  Consequential and Attributional Approaches to LCA : a Guide to Policy Makers with Specific Reference to Greenhouse Gas LCA of Biofuels April 2008 , 2009 .

[27]  G. Finnveden,et al.  Scenario types and techniques: Towards a user's guide , 2006 .

[28]  L. Lynd,et al.  Beneficial Biofuels—The Food, Energy, and Environment Trilemma , 2009, Science.

[29]  L. Sokka,et al.  Quantifying the total environmental impacts of an industrial symbiosis - a comparison of process-, hybrid and input-output life cycle assessment. , 2010, Environmental science & technology.

[30]  Ari Nissinen,et al.  Methodological Aspects of Applying Life Cycle Assessment to Industrial Symbioses , 2012 .

[31]  William E. Kastenberg,et al.  Industrial ecology and energy systems: a first step , 1998 .

[32]  B. Green,et al.  Writing narrative literature reviews for peer-reviewed journals: secrets of the trade. , 2006, Journal of chiropractic medicine.

[33]  S. Donkin,et al.  Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. , 2009, Journal of dairy science.

[34]  Xavier Turon,et al.  Valorization of biodiesel derived glycerol as a carbon source to obtain added-value metabolites: Focus on polyunsaturated fatty acids. , 2012, Biotechnology advances.

[35]  Lígia Salgueiro,et al.  Industrial Crops and Products , 2013 .

[36]  A. Tillman,et al.  Normative ethics and methodology for life cycle assessment , 2005 .

[37]  Per Paulsson,et al.  Energianalys av etanolproduktion; En fallstudie av Lantmännen Agroetanols produktionssystem i Norrköping Energy analysis of ethanol production; A case study of Lantmännen Agroetanol's production system in Norrköping , 2007 .

[38]  Göran Finnveden,et al.  Environmental systems analysis tools – an overview , 2005 .

[39]  Gabriella Fiorentino,et al.  Cropping bioenergy and biomaterials in marginal land: The added value of the biorefinery concept , 2011 .

[40]  Tim Patterson,et al.  Life cycle assessment of biogas infrastructure options on a regional scale. , 2011, Bioresource technology.

[41]  Helen H. Lou,et al.  Environmental impact assessment of different design schemes of an industrial ecosystem , 2007 .

[42]  Pål Börjesson,et al.  Good or bad bioethanol from a greenhouse gas perspective – What determines this? , 2009 .

[43]  J. Fava,et al.  Life‐Cycle Assessment Practitioner Survey: Summary of Results , 2006 .

[44]  Francesco Cherubini,et al.  GHG balances of bioenergy systems – Overview of key steps in the production chain and methodological concerns , 2010 .

[45]  Gjalt Huppes,et al.  Three Strategies to Overcome the Limitations of Life‐Cycle Assessment , 2004 .

[46]  R. Diaz‐Chavez Assessing biofuels: Aiming for sustainable development or complying with the market? , 2011 .

[47]  R. V. Berkel,et al.  Quantifying Sustainability Benefits of Industrial Symbioses , 2010 .

[48]  Glen Corder,et al.  Regional synergies in the Australian minerals industry: Case-studies and enabling tools , 2007 .

[49]  J Villegas,et al.  Life cycle assessment of biofuels: energy and greenhouse gas balances. , 2009, Bioresource technology.

[50]  Elisabeth Wetterlund,et al.  System studies of forest-based biomass gasification , 2012 .

[51]  Matthew Leach,et al.  Quantifying ‘geographic proximity’: Experiences from the United Kingdom's National Industrial Symbiosis Programme , 2011 .

[52]  Pål Börjesson Energianalys av drivmedel från spannmål och vall , 2004 .

[53]  G. Inglett,et al.  Effect of incorporation of distillers’ dried grain with solubles (DDGS) on quality of cornbread , 2011 .

[54]  Walter Klöpffer,et al.  Life cycle assessment , 1997, Environmental science and pollution research international.

[55]  Adisa Azapagic,et al.  Options for broadening and deepening the LCA approaches , 2010 .

[56]  Hyon Hee Yoon,et al.  Ethanol production from food residues , 2011 .

[57]  Göran Finnveden,et al.  Scenarios in selected tools for environmental systems analysis , 2008 .

[58]  K. Eisenhardt Building theories from case study research , 1989, STUDI ORGANIZZATIVI.

[59]  Scott Duncan,et al.  A survey of unresolved problems in life cycle assessment , 2008 .

[60]  D. Huisingh,et al.  The synergistic role of embeddedness and capabilities in industrial symbiosis: illustration based upon 12 years of experiences in the Rotterdam Harbour and Industry Complex , 2008 .

[61]  Francesco Cherubini,et al.  The biorefinery concept: Using biomass instead of oil for producing energy and chemicals , 2010 .

[62]  Kent Petersson,et al.  Industrial symbiosis in the Swedish forest industry , 2007 .

[63]  T. Graedel,et al.  Industrial ecology: goals and definitions , 2002 .

[64]  Ernest A. Lowe,et al.  Industrial ecology and industrial ecosystems , 1995 .

[65]  Lars Ingelstam,et al.  Large Technical Systems: a Multidisciplinary Research Tradition , 2004 .

[66]  Larry Katz,et al.  The Use of Focus Group Methodology in Education: Some Theoretical and Practical Considerations, 5(3) , 2001 .

[67]  M. Chertow “Uncovering” Industrial Symbiosis , 2007 .

[68]  Reinout Heijungs,et al.  Allocation and 'what-if' scenarios in life cycle assessment of waste management systems. , 2007, Waste management.

[69]  Sven Bernesson,et al.  A limited LCA comparing large- and small-scale production of ethanol for heavy engines under Swedish conditions , 2006 .

[70]  Michael Martin,et al.  Industrial Symbiosis for the development of Biofuel Production , 2010 .

[71]  M. Chertow,et al.  Quantifying economic and environmental benefits of co-located firms. , 2005, Environmental science & technology.

[72]  Niamh M. Power,et al.  How can we improve the energy balance of ethanol production from wheat , 2008 .

[73]  W. Kiatkittipong,et al.  Cleaner gasoline production by using glycerol as fuel extender , 2010 .

[74]  J. W. Ponton,et al.  Biofuels: Thermodynamic sense and nonsense , 2009 .

[75]  Khalid Rehman Hakeem,et al.  Biomass and Bioenergy , 2014, Springer International Publishing.

[76]  Murray Moo-Young,et al.  Towards sustainable production of clean energy carriers from biomass resources , 2012 .

[77]  Bruno Peuportier,et al.  How to account for CO2 emissions from biomass in an LCA , 2007 .

[78]  Tomas Ekvall,et al.  System boundaries and input data in consequential life cycle inventory analysis , 2004 .

[79]  Eric P. Johnson What are the rules for biofuel carbon accounting , 2011 .

[80]  Sueli Rodrigues,et al.  Evaluation of a co-product of biodiesel production as carbon source in the production of biosurfactant by P. aeruginosa MSIC02 , 2011 .

[81]  Ari Nissinen,et al.  How can the sustainability of industrial symbioses be measured , 2008 .

[82]  Mats Söderström,et al.  Developing integration in a local industrial ecosystem : An explorative approach , 2007 .

[83]  P. Börjesson,et al.  Environmental assessment of propionic acid produced in an agricultural biomass-based biorefinery system , 2011 .

[84]  Gail Taylor,et al.  Biofuels and the biorefinery concept , 2008 .

[85]  Marian Chertow,et al.  INDUSTRIAL SYMBIOSIS: Literature and Taxonomy , 2000 .

[86]  Martina Poeschl,et al.  Environmental impacts of biogas deployment - Part I: Life cycle inventory for evaluation of production process emissions to air. , 2012 .

[87]  David Pennington,et al.  Recent developments in Life Cycle Assessment. , 2009, Journal of environmental management.

[88]  R. Stake The art of case study research , 1995 .

[89]  John J. Reap,et al.  A survey of unresolved problems in life cycle assessment , 2008 .

[90]  P. Laybourn,et al.  Redefining Industrial Symbiosis , 2012 .

[91]  René van Berkel,et al.  Comparability of Industrial Symbioses , 2009 .

[92]  Bo Pedersen Weidema,et al.  Avoiding Co‐Product Allocation in Life‐Cycle Assessment , 2000 .

[93]  Mats-Olov Olsson,et al.  Systems Approaches and Their Application: Examples from Sweden , 2006 .

[94]  Célio L. Cavalcante,et al.  Transesterificarion of soybean oil using ethanol and mesoporous silica catalyst , 2012 .

[95]  Robert U. Ayres,et al.  Eco-thermodynamics: economics and the second law , 1998 .

[96]  Earthscan Uk Biofuels for transport: global potential and implications for sustainable energy and agriculture. , 2007 .

[97]  Göran Finnveden,et al.  Allocation in ISO 14041—a critical review , 2001 .

[98]  A. Wolf,et al.  Using an optimization model to evaluate the economic benefits of industrial symbiosis in the forest industry , 2008 .

[99]  Philip Peck,et al.  Regional biomass planning – Helping to realise national renewable energy goals? , 2012 .

[100]  Sunderasan Srinivasan,et al.  The food v. fuel debate: A nuanced view of incentive structures , 2009 .

[101]  Ari Nissinen,et al.  Analyzing the Environmental Benefits of Industrial Symbiosis , 2011 .

[102]  J. A. Alburquerque,et al.  Assessment of the fertiliser potential of digestates from farm and agroindustrial residues , 2012 .

[103]  D. Lazarevic Life Cycle Thinking and Waste Policy: Between Science and Society , 2012 .

[104]  N. Jacobsen Industrial Symbiosis in Kalundborg, Denmark: A Quantitative Assessment of Economic and Environmental Aspects , 2006 .

[105]  Yanbin Liu,et al.  Bioconversion of crude glycerol to glycolipids in Ustilago maydis. , 2011, Bioresource technology.

[106]  Anna Björklund,et al.  Survey of approaches to improve reliability in lca , 2002 .

[107]  Laura Sokka,et al.  Industrial symbiosis contributing to more sustainable energy use – an example from the forest industry in Kymenlaakso, Finland , 2011 .

[108]  J. Grāvītis,et al.  Clustering of bio-products technologies for zero emissions and eco-efficiency , 2004 .

[109]  J. Kitzinger The methodology of focus groups: the importance of interaction between research participants , 1994 .

[110]  Göran Finnveden,et al.  On the limitations of life cycle assessment and environmental systems analysis tools in general , 2000 .

[111]  Anders Hammer Strømman,et al.  Influence of allocation methods on the environmental performance of biorefinery products—A case study , 2011 .

[112]  Åsa Moberg,et al.  Environmental systems analysis tools for decision-making LCA and Swedish waste management as an example , 2006 .

[113]  M. Porter,et al.  Industrial Ecology and Competitiveness , 1998 .

[114]  Milan Martinov,et al.  Applicability of biogas digestate as solid fuel , 2010 .

[115]  O. Çiftçi,et al.  Continuous production of fatty acid methyl esters from corn oil in a supercritical carbon dioxide bioreactor , 2011 .

[116]  Warit Jawjit,et al.  Assessing environmental performance by combining life cycle assessment, multi-criteria analysis and environmental performance indicators , 2007 .

[117]  Shizuka Hashimoto,et al.  Quantitative assessment of urban and industrial symbiosis in Kawasaki, Japan. , 2009, Environmental science & technology.

[118]  Mikael Lantz,et al.  The prospects for an expansion of biogas systems in Sweden--Incentives, barriers and potentials , 2007 .

[119]  Anna Björklund,et al.  What life-cycle assessment does and does not do in assessments of waste management. , 2007, Waste management.

[120]  R. Heijungs,et al.  Differences between LCA for analysis and LCA for policy: a case study on the consequences of allocation choices in bio-energy policies , 2012, The International Journal of Life Cycle Assessment.

[121]  R. Heijungs,et al.  Economic allocation: Examples and derived decision tree , 2004 .

[122]  Jerry D. Murphy,et al.  Ethanol production from energy crops and wastes for use as a transport fuel in Ireland , 2005 .

[123]  Jacinto F. Fabiosa,et al.  Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change , 2008, Science.