Stock returns and hyperbolic distributions

The four parameter family of hyperbolic distributions fits very well the daily returns of the German stocks that have been included in the DAX during the period 1974 and 1992. Estimators and confidence regions for the hyperbolic parameters are calculated from the empirical data. In particular, skewness and kurtosis can be modelled much better by hyperbolic distributions than by normal distributions. Dates of outliers are identified with economical or political events in the world. It is indicated how the hyperbolic parameters can be used to compare different stocks.

[1]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  Michael M. Sørensen,et al.  A hyperbolic diffusion model for stock prices , 1996, Finance Stochastics.

[3]  M. Osborne Brownian Motion in the Stock Market , 1959 .

[4]  E. Eberlein,et al.  Hyperbolic distributions in finance , 1995 .

[5]  P. Mandl Analytical treatment of one-dimensional Markov processes , 1968 .

[6]  O. Barndorff-Nielsen Probability and Statistics: Self-Decomposability, Finance and Turbulence , 1998 .

[7]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[8]  S. James Press,et al.  A Compound Events Model for Security Prices , 1967 .

[9]  S. Rachev,et al.  Modeling asset returns with alternative stable distributions , 1993 .

[10]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .

[11]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[12]  O. E. Barndorff-Nielsen,et al.  Wind shear and hyperbolic distributions , 1989 .

[13]  Ganapati P. Patil,et al.  Statistical Distributions in Scientific Work , 1981 .

[14]  R. Officer The Distribution of Stock Returns , 1972 .

[15]  P. Praetz,et al.  The Distribution of Share Price Changes , 1972 .

[16]  Robert C. Blattberg,et al.  A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices: Reply , 1974 .

[17]  Daniel Hartmann,et al.  SAHARA: a package of PC computer programs for estimating both log-hyperbolic grain-size parameters and standard moments , 1988 .

[18]  O. Barndorff-Nielsen Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling , 1997 .

[19]  H. Markowitz,et al.  The Random Character of Stock Market Prices. , 1965 .

[20]  Ole E. Barndorff-Nielsen,et al.  Hyperbolic Distributions and Ramifications: Contributions to Theory and Application , 1981 .

[21]  Jens Ledet Jensen,et al.  The Fascination of Sand , 1985 .

[22]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[23]  Jens Ledet Jensen,et al.  Maximum-likelihood estimation of the hyperbolic parameters from grouped observations , 1988 .

[24]  B. Mandelbrot Paretian Distributions and Income Maximization , 1962 .

[25]  D. Upton,et al.  The Stable Paretian Distribution, Subordinated Stochastic Processes, and Asymptotic Lognormality: An Empirical Investigation , 1979 .