for biomarker discovery in clinical proteomics

[1]  R. Tibshirani,et al.  Diagnosis of multiple cancer types by shrunken centroids of gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[3]  Christopher S. Oehmen,et al.  A support vector machine model for the prediction of proteotypic peptides for accurate mass and time proteomics , 2008, Bioinform..

[4]  Andreas Zell,et al.  Prediction of breast cancer by profiling of urinary RNA metabolites using Support Vector Machine-based feature selection , 2009, BMC Cancer.

[5]  James J. Chen,et al.  Development of biomarker classifiers from high-dimensional data , 2009, Briefings Bioinform..

[6]  Age K. Smilde,et al.  Assessing the performance of statistical validation tools for megavariate metabolomics data , 2006, Metabolomics.

[7]  William Stafford Noble,et al.  A new algorithm for the evaluation of shotgun peptide sequencing in proteomics: support vector machine classification of peptide MS/MS spectra and SEQUEST scores. , 2003, Journal of proteome research.

[8]  Sayan Mukherjee,et al.  Feature Selection for SVMs , 2000, NIPS.

[9]  Pei-lin Mao,et al.  Prediction of prostate cancer using hair trace element concentration and support vector machine method , 2007, Biological Trace Element Research.

[10]  Anne-Laure Boulesteix,et al.  Partial least squares: a versatile tool for the analysis of high-dimensional genomic data , 2006, Briefings Bioinform..

[11]  Weidong Zhang,et al.  Metabolomic study of myocardial ischemia and intervention effects of Compound Danshen Tablets in rats using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. , 2010, Journal of pharmaceutical and biomedical analysis.

[12]  Pedro Larrañaga,et al.  A review of feature selection techniques in bioinformatics , 2007, Bioinform..

[13]  A. Antoniadis,et al.  Segmentation of magnetic resonance brain images through discriminant analysis , 2003, Journal of Neuroscience Methods.

[14]  Yong Mao,et al.  Constructing Support Vector Machine Ensembles for Cancer Classification Based on Proteomic Profiling , 2005, Genomics, proteomics & bioinformatics.

[15]  V. Puntmann How-to guide on biomarkers: biomarker definitions, validation and applications with examples from cardiovascular disease , 2009, Postgraduate Medical Journal.

[16]  Trevor Hastie,et al.  Class Prediction by Nearest Shrunken Centroids, with Applications to DNA Microarrays , 2003 .

[17]  Age K. Smilde,et al.  Discriminant Q2 (DQ2) for improved discrimination in PLSDA models , 2008, Metabolomics.

[18]  Jan van der Greef,et al.  Identification of disease- and nutrient-related metabolic fingerprints in osteoarthritic Guinea pigs. , 2003, The Journal of nutrition.

[19]  R. Simó,et al.  Metabolic fingerprints of proliferative diabetic retinopathy: an 1H-NMR-based metabonomic approach using vitreous humor. , 2010, Investigative ophthalmology & visual science.

[20]  Fang-Xiang Wu,et al.  Quality assessment of tandem mass spectra using support vector machine (SVM) , 2009, BMC Bioinformatics.

[21]  E. Lin,et al.  A Support Vector Machine Approach to Assess Drug Efficacy of Interferon-α and Ribavirin Combination Therapy , 2012, Molecular Diagnosis & Therapy.

[22]  Saifullah,et al.  Metabolic classification of South American Ilex species by NMR-based metabolomics. , 2010, Phytochemistry.

[23]  Honglin Huang,et al.  Metabonomics study of urine from Sprague-Dawley rats exposed to Huang-yao-zi using (1)H NMR spectroscopy. , 2010, Journal of pharmaceutical and biomedical analysis.

[24]  Z. Ramadan,et al.  Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms. , 2006, Talanta.

[25]  P. G. Kistemaker,et al.  Discriminant analysis by double stage principal component analysis , 1983 .

[26]  Joachim M. Buhmann,et al.  Feature selection for support vector machines , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[27]  Mark A van de Wiel,et al.  Support Vector Machine Approach to Separate Control and Breast Cancer Serum Samples , 2008, Statistical applications in genetics and molecular biology.

[28]  D. Bertrand,et al.  Application of PLS‐DA in multivariate image analysis , 2006 .

[29]  Rainer Breitling,et al.  msCompare: A Framework for Quantitative Analysis of Label-free LC-MS Data for Comparative Candidate Biomarker Studies* , 2012, Molecular & Cellular Proteomics.

[30]  Melanie Hilario,et al.  Approaches to dimensionality reduction in proteomic biomarker studies , 2007, Briefings Bioinform..

[31]  Yiyu Cheng,et al.  Urinary nucleosides based potential biomarker selection by support vector machine for bladder cancer recognition. , 2007, Analytica chimica acta.

[32]  Age K. Smilde,et al.  UvA-DARE ( Digital Academic Repository ) Assessment of PLSDA cross validation , 2008 .

[33]  Etienne Barnard,et al.  Data characteristics that determine classifier performance , 2006 .

[34]  F. Liu,et al.  A novel scoring system for prognostic prediction in d-galactosamine/lipopolysaccharide-induced fulminant hepatic failure BALB/c mice , 2009, BMC Gastroenterology.

[35]  Susmita Datta,et al.  Feature selection and machine learning with mass spectrometry data. , 2010, Methods in molecular biology.

[36]  A. Smilde,et al.  Assessing the statistical validity of proteomics based biomarkers. , 2007, Analytica chimica acta.

[37]  Kai Wang,et al.  Support Vector Machine-Based Feature Selection for Classification of Liver Fibrosis Grade in Chronic Hepatitis C , 2006, Journal of Medical Systems.

[38]  Age K. Smilde,et al.  A Classification Model for the Leiden Proteomics Competition , 2008, Statistical applications in genetics and molecular biology.

[39]  Age K. Smilde,et al.  Multivariate paired data analysis: multilevel PLSDA versus OPLSDA , 2009, Metabolomics.

[40]  Rainer Breitling,et al.  Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments , 2004, FEBS letters.

[41]  M. Girolami,et al.  Recommendations for Biomarker Identification and Qualification in Clinical Proteomics , 2010, Science Translational Medicine.

[42]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[43]  Junyi Yang,et al.  Simple quality assessment approach for herbal extracts using high performance liquid chromatography-UV based metabolomics platform. , 2010, Journal of chromatography. A.

[44]  Jason Weston,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.

[45]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[46]  A. Smilde,et al.  Statistical data processing in clinical proteomics. , 2008, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[47]  M. Barker,et al.  Partial least squares for discrimination , 2003 .

[48]  Steven A Carr,et al.  Protein biomarker discovery and validation: the long and uncertain path to clinical utility , 2006, Nature Biotechnology.