Nested quantum annealing correction at finite temperature: p -spin models

Quantum annealing in a real device is necessarily susceptible to errors due to diabatic transitions and thermal noise. Nested quantum annealing correction is a method to suppress errors by using an all-to-all penalty coupling among a set of physical qubits representing a logical qubit. We show analytically that nested quantum annealing correction can suppress errors effectively in ferromagnetic and antiferromagnetic Ising models with infinite-range interactions. Our analysis reveals that the nesting structure can significantly weaken or even remove first-order phase transitions, in which the energy gap closes exponentially. The nesting structure also suppresses thermal fluctuations by reducing the effective temperature.

[1]  P. Shor,et al.  Error Correcting Codes For Adiabatic Quantum Computation , 2005, quant-ph/0512170.

[2]  Catherine C. McGeoch,et al.  Benchmarking a quantum annealing processor with the time-to-target metric , 2015, 1508.05087.

[3]  I. Marvian Exponential suppression of decoherence and relaxation of quantum systems using energy penalty , 2016, 1602.03251.

[4]  M. W. Johnson,et al.  Thermally assisted quantum annealing of a 16-qubit problem , 2013, Nature Communications.

[5]  I. Hen,et al.  Temperature Scaling Law for Quantum Annealing Optimizers. , 2017, Physical review letters.

[6]  Daniel A. Lidar,et al.  Evidence for a Limited Quantum Speedup on a Quantum Annealer , 2017 .

[7]  J. Clarke,et al.  The flux qubit revisited to enhance coherence and reproducibility , 2015, Nature Communications.

[8]  Daniel A. Lidar,et al.  Experimental signature of programmable quantum annealing , 2012, Nature Communications.

[9]  Daniel A. Lidar,et al.  Nested quantum annealing correction , 2015, npj Quantum Information.

[10]  T. Jorg,et al.  Energy gaps in quantum first-order mean-field–like transitions: The problems that quantum annealing cannot solve , 2009, 0912.4865.

[11]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[12]  M. Ohzeki,et al.  An exact solution of the partition function for mean-field quantum spin systems without the static approximation , 2018, 1808.09707.

[13]  G. Hagedorn,et al.  Elementary Exponential Error Estimates for the Adiabatic Approximation , 2002 .

[14]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[15]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[16]  Daniel A. Lidar,et al.  Adiabatic approximation with exponential accuracy for many-body systems and quantum computation , 2008, 0808.2697.

[17]  Daniel A. Lidar,et al.  High-fidelity adiabatic quantum computation via dynamical decoupling , 2012, 1205.2725.

[18]  Daniel A. Lidar,et al.  Quantum annealing correction with minor embedding , 2015, 1507.02658.

[19]  Kevin C. Young,et al.  Error suppression and error correction in adiabatic quantum computation: non-equilibrium dynamics , 2013, 1307.5892.

[20]  Firas Hamze,et al.  Seeking Quantum Speedup Through Spin Glasses: The Good, the Bad, and the Ugly , 2015, 1505.01545.

[21]  Ruedi Seiler,et al.  Adiabatic theorems and applications to the quantum hall effect , 1987 .

[22]  Alejandro Perdomo-Ortiz,et al.  Strengths and weaknesses of weak-strong cluster problems: A detailed overview of state-of-the-art classical heuristics versus quantum approaches , 2016, 1604.01746.

[23]  Daniel A. Lidar,et al.  Adiabatic quantum computation , 2016, 1611.04471.

[24]  V. Fock,et al.  Beweis des Adiabatensatzes , 1928 .

[25]  Daniel A. Lidar,et al.  Quantum-annealing correction at finite temperature: Ferromagnetic p -spin models , 2016, 1610.09535.

[26]  Kevin C. Young,et al.  Error suppression and error correction in adiabatic quantum computation I: techniques and challenges , 2013, 1307.5893.

[27]  Umesh Vazirani,et al.  Comment on "Distinguishing Classical and Quantum Models for the D-Wave Device" , 2014, 1404.6499.

[28]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[29]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[30]  M. W. Johnson,et al.  Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor , 2010, 1004.1628.

[31]  Daniel A. Lidar,et al.  Quantum error suppression with commuting Hamiltonians: two local is too local. , 2014, Physical review letters.

[32]  H. Nishimori,et al.  Many-body transverse interactions in the quantum annealing of the p-spin ferromagnet , 2012, 1207.2909.

[33]  Rosenbaum,et al.  Quantum annealing of a disordered magnet , 1999, Science.

[34]  G. Aeppli,et al.  Tunable quantum tunnelling of magnetic domain walls , 2001, Nature.

[35]  Daniel A. Lidar,et al.  Quantum annealing correction for random Ising problems , 2014, 1408.4382.

[36]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[37]  F. Fressin,et al.  Emergence and Frustration of Magnetism with Variable-Range Interactions in a Quantum Simulator , 2012, Science.

[38]  Catherine C. McGeoch,et al.  Quantum Annealing amid Local Ruggedness and Global Frustration , 2017, Journal of the Physical Society of Japan.

[39]  Daniel A. Lidar,et al.  Optimally Stopped Optimization , 2016, 1608.05764.

[40]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[41]  R. Moessner,et al.  Quantum adiabatic algorithm and scaling of gaps at first-order quantum phase transitions. , 2012, Physical review letters.

[42]  R. Feynman Simulating physics with computers , 1999 .

[43]  L. Garrido,et al.  Degree of approximate validity of the adiabatic invariance in quantum mechanics , 1962 .

[44]  Daniel A. Lidar,et al.  Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes. , 2016, Physical review letters.

[45]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[46]  M. W. Johnson,et al.  Entanglement in a Quantum Annealing Processor , 2014, 1401.3500.

[47]  Helmut G. Katzgraber,et al.  A deceptive step towards quantum speedup detection , 2017, Quantum Science and Technology.

[48]  Daniel A. Lidar,et al.  Comment on: "Classical signature of quantum annealing" , 2013, 1305.5837.

[49]  M. W. Johnson,et al.  Tunneling spectroscopy using a probe qubit , 2012, 1210.6310.

[50]  Daniel A. Lidar,et al.  Mean Field Analysis of Quantum Annealing Correction. , 2015, Physical review letters.

[51]  Ryan Babbush,et al.  What is the Computational Value of Finite Range Tunneling , 2015, 1512.02206.

[52]  Daniel A. Lidar,et al.  Performance of two different quantum annealing correction codes , 2015, Quantum Inf. Process..

[53]  Masoud Mohseni,et al.  Computational Role of Multiqubit Tunneling in a Quantum Annealer , 2015 .

[54]  Daniel A. Lidar,et al.  Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.

[55]  S. D. Pinski,et al.  Adiabatic Quantum Computing , 2011, 1108.0560.

[56]  Zhang Jiang,et al.  Non-commuting two-local Hamiltonians for quantum error suppression , 2015, Quantum Inf. Process..

[57]  R. Car,et al.  Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.

[58]  Daniel A. Lidar,et al.  Scalable effective temperature reduction for quantum annealers via nested quantum annealing correction , 2017, 1710.07871.

[59]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[60]  B. Chakrabarti,et al.  Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.

[61]  J. Raimond,et al.  Towards quantum simulations with circular Rydberg atoms , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[62]  J. Smolin,et al.  Classical signature of quantum annealing , 2013, Front. Phys..

[63]  Daniel A. Lidar,et al.  Towards fault tolerant adiabatic quantum computation. , 2007, Physical review letters.

[64]  Daniel A. Lidar,et al.  Probing for quantum speedup in spin-glass problems with planted solutions , 2015, 1502.01663.

[65]  Cabrera,et al.  Universality of finite-size scaling: Role of the boundary conditions. , 1986, Physical review letters.

[66]  Tosio Kato On the Adiabatic Theorem of Quantum Mechanics , 1950 .

[67]  Daniel A. Lidar,et al.  Demonstration of a Scaling Advantage for a Quantum Annealer over Simulated Annealing , 2017, Physical Review X.

[68]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[69]  D. Rosenberg,et al.  Coherent Coupled Qubits for Quantum Annealing , 2017, 1701.06544.

[70]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[71]  S. Dusuel,et al.  Quantum phase transitions in fully connected spin models: An entanglement perspective , 2011, 1101.3654.

[72]  Daniel A. Lidar,et al.  Error-corrected quantum annealing with hundreds of qubits , 2013, Nature Communications.

[73]  Daniel A. Lidar,et al.  Reexamining classical and quantum models for the D-Wave One processor , 2014, 1409.3827.

[74]  Aaron C. E. Lee,et al.  Many-body localization in a quantum simulator with programmable random disorder , 2015, Nature Physics.

[75]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.

[76]  A. Ganti,et al.  Family of [[6k,2k,2]] codes for practical and scalable adiabatic quantum computation , 2013, 1309.1674.

[77]  G. Nenciu On the adiabatic theorem of quantum mechanics , 1980 .

[78]  Guilhem Semerjian,et al.  The Quantum Adiabatic Algorithm applied to random optimization problems: the quantum spin glass perspective , 2012, ArXiv.

[79]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[80]  Anthony J Leggett,et al.  Quantum computing and quantum bits in mesoscopic systems , 2004 .

[81]  Adam D. Bookatz,et al.  Error suppression in Hamiltonian-based quantum computation using energy penalties , 2014, 1407.1485.

[82]  M. W. Johnson,et al.  Experimental demonstration of a robust and scalable flux qubit , 2009, 0909.4321.

[83]  M. Ruskai,et al.  Bounds for the adiabatic approximation with applications to quantum computation , 2006, quant-ph/0603175.

[84]  F. Spedalieri,et al.  Reexamination of the evidence for entanglement in a quantum annealer , 2015, 1506.03539.

[85]  Cabrera,et al.  Role of boundary conditions in the finite-size Ising model. , 1987, Physical review. B, Condensed matter.

[86]  Daniel A. Lidar,et al.  Adiabatic quantum optimization with the wrong Hamiltonian , 2013, 1310.0529.

[87]  P. Zoller,et al.  A Rydberg quantum simulator , 2009, 0907.1657.

[88]  W. Roeck,et al.  Adiabatic Theorem for Quantum Spin Systems. , 2016, Physical review letters.

[89]  M. W. Johnson,et al.  A scalable readout system for a superconducting adiabatic quantum optimization system , 2009, 0905.0891.

[90]  Mark W. Johnson,et al.  Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor , 2014, IEEE Transactions on Applied Superconductivity.

[91]  M. Bañuls,et al.  Thermofield-based chain-mapping approach for open quantum systems , 2015, 1504.07228.

[92]  I. Bloch,et al.  Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains , 2016, Science.

[93]  Richard Phillips Feynman,et al.  Quantum mechanical computers , 1984, Feynman Lectures on Computation.

[94]  S. Knysh,et al.  Quantum Optimization of Fully-Connected Spin Glasses , 2014, 1406.7553.

[95]  Seth Lloyd,et al.  Scalable Architecture for Adiabatic Quantum Computing of Np-Hard Problems , 2004 .

[96]  Cong Wang,et al.  Experimental evaluation of an adiabiatic quantum system for combinatorial optimization , 2013, CF '13.

[97]  M. Greiner,et al.  Quantum simulation of antiferromagnetic spin chains in an optical lattice , 2011, Nature.

[98]  U. Vazirani,et al.  How "Quantum" is the D-Wave Machine? , 2014, 1401.7087.

[99]  H. Nishimori,et al.  Anomalous behavior of the energy gap in the one-dimensional quantum XY model. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[100]  J. Cirac,et al.  Rapid Adiabatic Preparation of Injective Projected Entangled Pair States and Gibbs States. , 2016, Physical review letters.

[101]  M. Suzuki,et al.  Relationship between d-Dimensional Quantal Spin Systems and (d+1)-Dimensional Ising Systems: Equivalence, Critical Exponents and Systematic Approximants of the Partition Function and Spin Correlations , 1976 .