Nested quantum annealing correction at finite temperature: p -spin models
暂无分享,去创建一个
Daniel A. Lidar | Hidetoshi Nishimori | Walter Vinci | Shunji Matsuura | H. Nishimori | W. Vinci | D. Lidar | S. Matsuura
[1] P. Shor,et al. Error Correcting Codes For Adiabatic Quantum Computation , 2005, quant-ph/0512170.
[2] Catherine C. McGeoch,et al. Benchmarking a quantum annealing processor with the time-to-target metric , 2015, 1508.05087.
[3] I. Marvian. Exponential suppression of decoherence and relaxation of quantum systems using energy penalty , 2016, 1602.03251.
[4] M. W. Johnson,et al. Thermally assisted quantum annealing of a 16-qubit problem , 2013, Nature Communications.
[5] I. Hen,et al. Temperature Scaling Law for Quantum Annealing Optimizers. , 2017, Physical review letters.
[6] Daniel A. Lidar,et al. Evidence for a Limited Quantum Speedup on a Quantum Annealer , 2017 .
[7] J. Clarke,et al. The flux qubit revisited to enhance coherence and reproducibility , 2015, Nature Communications.
[8] Daniel A. Lidar,et al. Experimental signature of programmable quantum annealing , 2012, Nature Communications.
[9] Daniel A. Lidar,et al. Nested quantum annealing correction , 2015, npj Quantum Information.
[10] T. Jorg,et al. Energy gaps in quantum first-order mean-field–like transitions: The problems that quantum annealing cannot solve , 2009, 0912.4865.
[11] M. Sipser,et al. Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.
[12] M. Ohzeki,et al. An exact solution of the partition function for mean-field quantum spin systems without the static approximation , 2018, 1808.09707.
[13] G. Hagedorn,et al. Elementary Exponential Error Estimates for the Adiabatic Approximation , 2002 .
[14] Andrew Lucas,et al. Ising formulations of many NP problems , 2013, Front. Physics.
[15] Umesh V. Vazirani,et al. Quantum complexity theory , 1993, STOC.
[16] Daniel A. Lidar,et al. Adiabatic approximation with exponential accuracy for many-body systems and quantum computation , 2008, 0808.2697.
[17] Daniel A. Lidar,et al. High-fidelity adiabatic quantum computation via dynamical decoupling , 2012, 1205.2725.
[18] Daniel A. Lidar,et al. Quantum annealing correction with minor embedding , 2015, 1507.02658.
[19] Kevin C. Young,et al. Error suppression and error correction in adiabatic quantum computation: non-equilibrium dynamics , 2013, 1307.5892.
[20] Firas Hamze,et al. Seeking Quantum Speedup Through Spin Glasses: The Good, the Bad, and the Ugly , 2015, 1505.01545.
[21] Ruedi Seiler,et al. Adiabatic theorems and applications to the quantum hall effect , 1987 .
[22] Alejandro Perdomo-Ortiz,et al. Strengths and weaknesses of weak-strong cluster problems: A detailed overview of state-of-the-art classical heuristics versus quantum approaches , 2016, 1604.01746.
[23] Daniel A. Lidar,et al. Adiabatic quantum computation , 2016, 1611.04471.
[24] V. Fock,et al. Beweis des Adiabatensatzes , 1928 .
[25] Daniel A. Lidar,et al. Quantum-annealing correction at finite temperature: Ferromagnetic p -spin models , 2016, 1610.09535.
[26] Kevin C. Young,et al. Error suppression and error correction in adiabatic quantum computation I: techniques and challenges , 2013, 1307.5893.
[27] Umesh Vazirani,et al. Comment on "Distinguishing Classical and Quantum Models for the D-Wave Device" , 2014, 1404.6499.
[28] Peter W. Shor,et al. Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[29] M. Lukin,et al. Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.
[30] M. W. Johnson,et al. Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor , 2010, 1004.1628.
[31] Daniel A. Lidar,et al. Quantum error suppression with commuting Hamiltonians: two local is too local. , 2014, Physical review letters.
[32] H. Nishimori,et al. Many-body transverse interactions in the quantum annealing of the p-spin ferromagnet , 2012, 1207.2909.
[33] Rosenbaum,et al. Quantum annealing of a disordered magnet , 1999, Science.
[34] G. Aeppli,et al. Tunable quantum tunnelling of magnetic domain walls , 2001, Nature.
[35] Daniel A. Lidar,et al. Quantum annealing correction for random Ising problems , 2014, 1408.4382.
[36] M. W. Johnson,et al. Quantum annealing with manufactured spins , 2011, Nature.
[37] F. Fressin,et al. Emergence and Frustration of Magnetism with Variable-Range Interactions in a Quantum Simulator , 2012, Science.
[38] Catherine C. McGeoch,et al. Quantum Annealing amid Local Ruggedness and Global Frustration , 2017, Journal of the Physical Society of Japan.
[39] Daniel A. Lidar,et al. Optimally Stopped Optimization , 2016, 1608.05764.
[40] Daniel A. Lidar,et al. Defining and detecting quantum speedup , 2014, Science.
[41] R. Moessner,et al. Quantum adiabatic algorithm and scaling of gaps at first-order quantum phase transitions. , 2012, Physical review letters.
[42] R. Feynman. Simulating physics with computers , 1999 .
[43] L. Garrido,et al. Degree of approximate validity of the adiabatic invariance in quantum mechanics , 1962 .
[44] Daniel A. Lidar,et al. Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes. , 2016, Physical review letters.
[45] J. Doll,et al. Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.
[46] M. W. Johnson,et al. Entanglement in a Quantum Annealing Processor , 2014, 1401.3500.
[47] Helmut G. Katzgraber,et al. A deceptive step towards quantum speedup detection , 2017, Quantum Science and Technology.
[48] Daniel A. Lidar,et al. Comment on: "Classical signature of quantum annealing" , 2013, 1305.5837.
[49] M. W. Johnson,et al. Tunneling spectroscopy using a probe qubit , 2012, 1210.6310.
[50] Daniel A. Lidar,et al. Mean Field Analysis of Quantum Annealing Correction. , 2015, Physical review letters.
[51] Ryan Babbush,et al. What is the Computational Value of Finite Range Tunneling , 2015, 1512.02206.
[52] Daniel A. Lidar,et al. Performance of two different quantum annealing correction codes , 2015, Quantum Inf. Process..
[53] Masoud Mohseni,et al. Computational Role of Multiqubit Tunneling in a Quantum Annealer , 2015 .
[54] Daniel A. Lidar,et al. Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.
[55] S. D. Pinski,et al. Adiabatic Quantum Computing , 2011, 1108.0560.
[56] Zhang Jiang,et al. Non-commuting two-local Hamiltonians for quantum error suppression , 2015, Quantum Inf. Process..
[57] R. Car,et al. Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.
[58] Daniel A. Lidar,et al. Scalable effective temperature reduction for quantum annealers via nested quantum annealing correction , 2017, 1710.07871.
[59] D. Deutsch,et al. Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[60] B. Chakrabarti,et al. Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.
[61] J. Raimond,et al. Towards quantum simulations with circular Rydberg atoms , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).
[62] J. Smolin,et al. Classical signature of quantum annealing , 2013, Front. Phys..
[63] Daniel A. Lidar,et al. Towards fault tolerant adiabatic quantum computation. , 2007, Physical review letters.
[64] Daniel A. Lidar,et al. Probing for quantum speedup in spin-glass problems with planted solutions , 2015, 1502.01663.
[65] Cabrera,et al. Universality of finite-size scaling: Role of the boundary conditions. , 1986, Physical review letters.
[66] Tosio Kato. On the Adiabatic Theorem of Quantum Mechanics , 1950 .
[67] Daniel A. Lidar,et al. Demonstration of a Scaling Advantage for a Quantum Annealer over Simulated Annealing , 2017, Physical Review X.
[68] H. Nishimori,et al. Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.
[69] D. Rosenberg,et al. Coherent Coupled Qubits for Quantum Annealing , 2017, 1701.06544.
[70] E. Farhi,et al. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.
[71] S. Dusuel,et al. Quantum phase transitions in fully connected spin models: An entanglement perspective , 2011, 1101.3654.
[72] Daniel A. Lidar,et al. Error-corrected quantum annealing with hundreds of qubits , 2013, Nature Communications.
[73] Daniel A. Lidar,et al. Reexamining classical and quantum models for the D-Wave One processor , 2014, 1409.3827.
[74] Aaron C. E. Lee,et al. Many-body localization in a quantum simulator with programmable random disorder , 2015, Nature Physics.
[75] C. Monroe,et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.
[76] A. Ganti,et al. Family of [[6k,2k,2]] codes for practical and scalable adiabatic quantum computation , 2013, 1309.1674.
[77] G. Nenciu. On the adiabatic theorem of quantum mechanics , 1980 .
[78] Guilhem Semerjian,et al. The Quantum Adiabatic Algorithm applied to random optimization problems: the quantum spin glass perspective , 2012, ArXiv.
[79] Lov K. Grover. A fast quantum mechanical algorithm for database search , 1996, STOC '96.
[80] Anthony J Leggett,et al. Quantum computing and quantum bits in mesoscopic systems , 2004 .
[81] Adam D. Bookatz,et al. Error suppression in Hamiltonian-based quantum computation using energy penalties , 2014, 1407.1485.
[82] M. W. Johnson,et al. Experimental demonstration of a robust and scalable flux qubit , 2009, 0909.4321.
[83] M. Ruskai,et al. Bounds for the adiabatic approximation with applications to quantum computation , 2006, quant-ph/0603175.
[84] F. Spedalieri,et al. Reexamination of the evidence for entanglement in a quantum annealer , 2015, 1506.03539.
[85] Cabrera,et al. Role of boundary conditions in the finite-size Ising model. , 1987, Physical review. B, Condensed matter.
[86] Daniel A. Lidar,et al. Adiabatic quantum optimization with the wrong Hamiltonian , 2013, 1310.0529.
[87] P. Zoller,et al. A Rydberg quantum simulator , 2009, 0907.1657.
[88] W. Roeck,et al. Adiabatic Theorem for Quantum Spin Systems. , 2016, Physical review letters.
[89] M. W. Johnson,et al. A scalable readout system for a superconducting adiabatic quantum optimization system , 2009, 0905.0891.
[90] Mark W. Johnson,et al. Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor , 2014, IEEE Transactions on Applied Superconductivity.
[91] M. Bañuls,et al. Thermofield-based chain-mapping approach for open quantum systems , 2015, 1504.07228.
[92] I. Bloch,et al. Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains , 2016, Science.
[93] Richard Phillips Feynman,et al. Quantum mechanical computers , 1984, Feynman Lectures on Computation.
[94] S. Knysh,et al. Quantum Optimization of Fully-Connected Spin Glasses , 2014, 1406.7553.
[95] Seth Lloyd,et al. Scalable Architecture for Adiabatic Quantum Computing of Np-Hard Problems , 2004 .
[96] Cong Wang,et al. Experimental evaluation of an adiabiatic quantum system for combinatorial optimization , 2013, CF '13.
[97] M. Greiner,et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice , 2011, Nature.
[98] U. Vazirani,et al. How "Quantum" is the D-Wave Machine? , 2014, 1401.7087.
[99] H. Nishimori,et al. Anomalous behavior of the energy gap in the one-dimensional quantum XY model. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.
[100] J. Cirac,et al. Rapid Adiabatic Preparation of Injective Projected Entangled Pair States and Gibbs States. , 2016, Physical review letters.
[101] M. Suzuki,et al. Relationship between d-Dimensional Quantal Spin Systems and (d+1)-Dimensional Ising Systems: Equivalence, Critical Exponents and Systematic Approximants of the Partition Function and Spin Correlations , 1976 .