On curvature estimation of ISO surfaces in 3D gray-value images and the computation of shape descriptors

In this paper, we present a novel method to estimate curvature of iso gray-level surfaces in gray-value images. Our method succeeds where standard isophote curvature estimation methods fail. There is neither a segmentation of the surface needed nor a parametric model assumed. Our estimator works on the orientation field of the surface. This orientation field and a description of local structure is obtained by the Gradient Structure Tensor. The estimated orientation field has discontinuities mod /spl pi/. It is mapped via the Knutsson mapping to a continuous representation. The principal curvatures of the surface, a coordinate invariant property, are computed in this mapped representation. From these curvatures, locally the bending energy is computed to describe the surface shape. An extensive evaluation shows that our curvature estimation is robust even in the presence of noise, independent of the scale of the object and furthermore the relative error stays small.

[1]  Piet W. Verbeek A class of sampling-error free measures in oversampled band-limited images , 1985, Pattern Recognit. Lett..

[2]  Alexis Gourdon,et al.  Computing the Differential Characteristics of Isointensity Surfaces , 1995, Comput. Vis. Image Underst..

[3]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[4]  Steven W. Zucker,et al.  Shadows and shading flow fields , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Steven W. Zucker,et al.  Trace Inference, Curvature Consistency, and Curve Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Lucas J. van Vliet,et al.  Representing Orientation in n-Dimensional Spaces , 2003, CAIP.

[7]  H. Knutsson Representing Local Structure Using Tensors , 1989 .

[8]  Joost van de Weijer,et al.  Curvature Estimation in Oriented Patterns Using Curvilinear Models Applied to Gradient Vector Fields , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Max A. Viergever,et al.  Higher Order Differential Structure of Images , 1993, IPMI.

[10]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[11]  Judith Dijk,et al.  The D-Dimensional Inverse Vector-Gradient Operator and Its Application for Scale-Free Image Enhancement , 2003, CAIP.

[12]  Andrew P. Witkin,et al.  Analyzing Oriented Patterns , 1985, IJCAI.

[13]  Cris L. Luengo Hendriks,et al.  A Rotation-Invariant Morphology for Shape Analysis of Anisotropic Objects and Structures , 2001, IWVF.

[14]  J. Duncan,et al.  A bending energy model for measurement of cardiac shape deformity. , 1991, IEEE transactions on medical imaging.

[15]  Piet W. Verbeek,et al.  Shading from shape, the eikonal equation solved by grey-weighted distance transform , 1990, Pattern Recognit. Lett..

[16]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[17]  L. V. Vliet,et al.  Curvature and Bending Energy in Digitized 2D and 3D Images , 1993 .

[18]  Max A. Viergever,et al.  Differential and Integral Geometry of Linear Scale-Spaces , 1998, Journal of Mathematical Imaging and Vision.

[19]  Rein van den Boomgaard,et al.  Affine invariant deformation curves a tool for shape characterization , 1999, Image Vis. Comput..

[20]  Ian T. Young,et al.  An Analysis Technique for Biological Shape. I , 1974, Inf. Control..

[21]  Hans Knutsson,et al.  Filtering and reconstruction in image processing , 1984 .

[22]  Hans Knutsson,et al.  Estimation of Curvature in 3D Images Using Tensor Field Filtering , 1990, ECCV.

[23]  Adrian Hilton,et al.  Statistics of surface curvature estimates , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[24]  Max A. Viergever,et al.  Evaluation of Ridge Seeking Operators for Multimodality Medical Image Matching , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[26]  Steven W. Zucker,et al.  Radial Projection: An Efficient Update Rule for Relaxation Labeling , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Andrea J. van Doorn,et al.  Surface shape and curvature scales , 1992, Image Vis. Comput..

[28]  Steven W. Zucker,et al.  Logical/Linear Operators for Image Curves , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Joost van de Weijer,et al.  Robust Estimation of Orientation for Texture Analysis , 2002 .

[30]  Johan Wiklund,et al.  Multidimensional Orientation Estimation with Applications to Texture Analysis and Optical Flow , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Lucas J. van Vliet,et al.  Estimators of 2D edge length and position, 3D surface area and position in sampled grey-valued images , 1993 .

[32]  Lucas J. van Vliet,et al.  On the Location Error of Curved Edges in Low-Pass Filtered 2-D and 3-D Images , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  H. Knutsson Producing a Continuous and Distance Preserving 5-D Vector Representation of 3-D Orientation , 1985 .

[34]  Nicholas Ayache,et al.  From voxel to intrinsic surface features , 1992, Image Vis. Comput..