Dark matter distribution in the Draco dwarf from velocity moments

We study the distribution of dark matter in the Draco dwarf spheroidal galaxy by modelling the moments of the line-of-sight velocity distribution of stars obtained from new velocity data of Wilkinson et al. The luminosity distribution is approximated by a Sersic profile fitted to the data by Odenkirchen et al. We assume that the dark matter density profile is given by a formula with an inner cusp and an outer exponential cut-off, as recently proposed by Kazantzidis et al. as a result of simulations of tidal stripping of dwarfs by the potential of the Milky Way. The dark matter distribution is characterized by the total dark mass and the cut-off radius. The models have arbitrary velocity anisotropy parameter, assumed to be constant with radius. We estimate the three parameters by fitting both the line-of-sight velocity dispersion and kurtosis profiles, which allows us to break the degeneracy between the mass distribution and velocity anisotropy. The results of the fitting procedure turn out to be very different depending on the stellar sample considered, that is, on our choice of stars with discrepant velocities to be discarded as interlopers. For our most reliable sample, the model parameters remain weakly constrained, but the robust result is the preference for weakly tangential stellar orbits and high mass-to-light ratios. The best-fitting total mass is then 7 x 10 7 M ○. , much lower than recent estimates, while the mass-to-light ratio is M/L V = 300 M ○. /L ○. and almost constant with radius. If the binary fraction in the stellar population of Draco turns out to be significant, the kurtosis of the global velocity distribution will be smaller and the orbits inferred will be more tangential, while the resulting mass estimate will be lower.

[1]  J. Stadel,et al.  Density Profiles of Cold Dark Matter Substructure: Implications for the Missing-Satellites Problem , 2003, astro-ph/0312194.

[2]  The reliability of the kinematical evidence for dark matter: the effects of non-sphericity, substructure and streaming motions , 2003, astro-ph/0306520.

[3]  N. W. Evans,et al.  Dark matter in dwarf spheroidals – II. Observations and modelling of Draco , 2001, astro-ph/0109450.

[4]  J. Brinkmann,et al.  Observing the Dark Matter Density Profile of Isolated Galaxies , 2003, astro-ph/0301360.

[5]  G. Mamon,et al.  Radial velocity moments of dark matter haloes , 2005, astro-ph/0503391.

[6]  Structure of the Draco dwarf spheroidal galaxy , 2002, astro-ph/0201297.

[7]  U. F. Alvensleben,et al.  Spectral and photometric evolution of simple stellar populations at various metallicities , 2002, astro-ph/0205117.

[8]  STScI,et al.  The Tumultuous Lives of Galactic Dwarfs and the Missing Satellites Problem , 2004 .

[9]  Mike Irwin,et al.  Structural parameters for the Galactic dwarf spheroidals , 1995 .

[10]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[11]  Gary A. Mamon,et al.  Dark matter distribution in the Coma cluster from galaxy kinematics: breaking the mass-anisotropy degeneracy , 2003 .

[12]  Heidelberg,et al.  Draco: A Failure of the Tidal Model , 2003, astro-ph/0302287.

[13]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003 .

[14]  Ben Moore,et al.  Generating Equilibrium Dark Matter Halos: Inadequacies of the Local Maxwellian Approximation , 2003, astro-ph/0309517.

[15]  The specific entropy of elliptical galaxies: an explanation for profile‐shape distance indicators? , 1999, astro-ph/9905048.

[16]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[17]  Gary A. Mamon,et al.  Properties of spherical galaxies and clusters with an NFW density profile , 2000, astro-ph/0002395.

[18]  Ortwin Gerhard,et al.  Line-of-sight velocity profiles in spherical galaxies: breaking the degeneracy between anisotropy and mass , 1993 .

[19]  Takashi Ichikawa,et al.  GALAXY COLORS IN VARIOUS PHOTOMETRIC BAND SYSTEMS , 1995 .

[20]  S. Kent,et al.  Fourth moments and the dynamics of spherical systems , 1990 .

[21]  A Search for Ionized Gas in the Draco and Ursa Minor Dwarf Spheroidal Galaxies , 2003, astro-ph/0301228.

[22]  THE RR LYRAE DISTANCE TO THE DRACO DWARF SPHEROIDAL GALAXY , 2004 .

[23]  Ewa L. Łokas,et al.  Dark matter distribution in dwarf spheroidal galaxies , 2002 .

[24]  Fabio Governato,et al.  The Metamorphosis of Tidally Stirred Dwarf Galaxies , 2001, astro-ph/0103430.

[25]  E. Łokas Velocity dispersions of dwarf spheroidal galaxies: dark matter versus MOND , 2001 .

[26]  Joachim Stadel,et al.  The Structural evolution of substructure , 2003 .

[27]  R. Carrera,et al.  The Star Formation History and Morphological Evolution of the Draco Dwarf Spheroidal Galaxy , 2001, astro-ph/0108159.

[28]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[29]  Joachim Stadel,et al.  Velocity and spatial biases in cold dark matter subhalo distributions , 2004, astro-ph/0402160.

[30]  R. Carlberg,et al.  The Velocity and Mass Distribution of Clusters of Galaxies from the CNOC1 Cluster Redshift Survey , 1999, astro-ph/9910494.

[31]  Ralf Klessen,et al.  Are Dwarf Spheroidal Galaxies Dark Matter Dominated or Remnants of Disrupted Larger Satellite Galaxies? A Possible Test , 2001, astro-ph/0110427.

[32]  N. W. Evans,et al.  Kinematically Cold Populations at Large Radii in the Draco and Ursa Minor Dwarf Spheroidal Galaxies , 2004, astro-ph/0406520.

[33]  D. York,et al.  New Insights on the Draco Dwarf Spheroidal Galaxy from the Sloan Digital Sky Survey: A Larger Radius and No Tidal Tails , 2001, astro-ph/0108100.

[34]  U. Washington,et al.  The inner structure of ΛCDM haloes – III. Universality and asymptotic slopes , 2003, astro-ph/0311231.