An Adaptive Wavelet Collocation Method for Fluid-Structure Interaction at High Reynolds Numbers

Two mathematical approaches are combined to calculate high Rey\-nolds number incompressible fluid-structure interaction: a wavelet method to dynamically adapt the computational grid to flow intermittency and obstacle motion, and Brinkman penalization to enforce solid boundaries of arbitrary complexity. We also implement a wavelet-based multilevel solver for the Poisson problem for the pressure at each time step. The method is applied to two-dimensional flow around fixed and moving cylinders for Reynolds numbers in the range $3\times 10^1 \le Re \le 10^5$. The compression ratios of up to 1000 are achieved. For the first time it is demonstrated in actual dynamic simulations that the compression scales like $Re^{1/2}$ over five orders of magnitude, while computational complexity scales like $Re$. This represents a significant improvement over the classical complexity estimate of $Re^{9/4}$ for two-dimensional turbulence.

[1]  Anthony Leonard,et al.  Flow-induced vibration of a circular cylinder at limiting structural parameters , 2001 .

[2]  Johan Waldén,et al.  Adaptive Wavelet Methods for Hyperbolic PDEs , 1998, J. Sci. Comput..

[3]  Michael Griebel,et al.  Adaptive Wavelet Solvers for the Unsteady Incompressible Navier-Stokes Equations , 2000 .

[4]  Kai Schneider,et al.  Adaptive Wavelet Simulation of a Flow around an Impulsively Started Cylinder Using Penalisation , 2002 .

[5]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[6]  A. Brandt Guide to multigrid development , 1982 .

[7]  Oleg V. Vasilyev,et al.  Second-generation wavelet collocation method for the solution of partial differential equations , 2000 .

[8]  Gregory Beylkin,et al.  On the Adaptive Numerical Solution of Nonlinear Partial Differential Equations in Wavelet Bases , 1997 .

[9]  Silvia Bertoluzza An adaptive collocation method based on interpolating wavelets , 1997 .

[10]  Jie Shen,et al.  Velocity-Correction Projection Methods for Incompressible Flows , 2003, SIAM J. Numer. Anal..

[11]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[12]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[13]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[14]  O. Vasilyev,et al.  A Dynamically Adaptive Multilevel Wavelet Collocation Method for Solving Partial Differential Equations in a Finite Domain , 1996 .

[15]  H. T. Yang,et al.  Initial flow field over an impulsively started circular cylinder , 1975, Journal of Fluid Mechanics.

[16]  W. Sweldens The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .

[17]  O. Vasilyev,et al.  Stochastic coherent adaptive large eddy simulation method , 2002 .

[18]  D. Donoho Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .

[19]  M. Braza,et al.  Physical analysis of the transition to turbulence in the wake of a circular cylinder by three-dimensional Navier–Stokes simulation , 1998, Journal of Fluid Mechanics.

[20]  Oleg V. Vasilyev,et al.  Solving Multi-dimensional Evolution Problems with Localized Structures using Second Generation Wavelets , 2003 .

[21]  Wolfgang Dahmen,et al.  Nonlinear functionals of wavelet expansions – adaptive reconstruction and fast evaluation , 2000, Numerische Mathematik.

[22]  C. Williamson Defining a Universal and Continuous Strouhal-Reynolds Number Relationship for the Laminar Vortex She , 1988 .

[23]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[24]  Frauke Sprengel,et al.  Multilevel algorithms for finite difference discretizations on sparse grids , 2001, Numerical Algorithms.

[25]  Jacques Liandrat,et al.  Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation , 1990 .

[26]  Philippe Angot,et al.  A penalization method to take into account obstacles in incompressible viscous flows , 1999, Numerische Mathematik.

[27]  Nicholas K.-R. Kevlahan,et al.  An adaptive wavelet method for turbulence in complex geometries , 2001 .

[28]  Jochen Fröhlich,et al.  Numerical Simulation of Decaying Turbulence in an Adaptive Wavelet Basis , 1996 .

[29]  O. Vasilyev,et al.  A Fast Adaptive Wavelet Collocation Algorithm for Multidimensional PDEs , 1997 .

[30]  Michael Griebel,et al.  Multiscale Methods for the Simulation of Turbulent Flows , 2003 .

[31]  P. Koumoutsakos,et al.  High-resolution simulations of the flow around an impulsively started cylinder using vortex methods , 1995, Journal of Fluid Mechanics.

[32]  Nicholas K.-R. Kevlahan,et al.  An adaptive multilevel wavelet collocation method for elliptic problems , 2005 .

[33]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[34]  Kai Schneider,et al.  Comparison of an Adaptive Wavelet Method and Nonlinearly Filtered Pseudospectral Methods for Two-Dimensional Turbulence , 1997 .

[35]  O. Vasilyev,et al.  Hybrid wavelet collocation–Brinkman penalization method for complex geometry flows , 2002 .

[36]  Philippe Angot,et al.  Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows , 1999 .

[37]  Wolfgang Dahmen,et al.  Sparse Evaluation of Compositions of Functions Using Multiscale Expansions , 2003, SIAM J. Math. Anal..

[38]  Oleg V. Vasilyev,et al.  An Adaptive Wavelet Method for Fluid—Structure Interaction , 2001 .

[39]  S. Mallat,et al.  A wavelet based space-time adaptive numerical method for partial differential equations , 1990 .

[40]  Khodor Khadra,et al.  Fictitious domain approach for numerical modelling of Navier–Stokes equations , 2000 .

[41]  Nicholas K.-R. Kevlahan,et al.  Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization , 2001 .

[42]  D. Donoho Wavelet Shrinkage and W.V.D.: A 10-minute tour , 1997 .

[43]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[44]  M. Farge,et al.  Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis , 1999 .