New Symmetry Reductions for some Ordinary Differential Equations

Abstract In this work we derive potential symmetries for ordinary differential equations. By using these potential symmetries we find that the order of the ODE can be reduced even if this equation does not admit point symmetries. Moreover, in the case for which the ODE admits a group of point symmetries, we find that the potential symmetries allow us to perform further reductions than its point symmetries. Some diffusion equations admitting an infinite number of potential symmetries and the scaling group as a Lie symmetry are considered and some general results are obtained. For all the equations that we have studied, a set of potential symmetries admitted by the diffusion equation is “inherited” by the ODE that emerges as the reduced equation under the scaling group.