A sensorless MPPT-based solar tracking control approach for mobile autonomous systems

This paper presents a new approach to the solar tracking control. Today several methods are used to minimize the angle of incidence between the incoming sunlight and the photovoltaic (PV) panel. Most of them require optical solar sensor(s) to maximize energy output. There are approaches where geolocation data and the timetable of the Sun's position support a solar tracking mechanism. This paper proposes a novel sensorless (no optical or geo positioning sensors required) solar tracking mechanism based on a maximum power point tracking (MPPT) control for a mobile autonomous PV system. Such a system would provide an automatic PV panel position adjustment towards the Sun using a sensorless 3-DOF solar tracker system with a MPPT based control.

[1]  Jorge Angeles,et al.  Structural Optimization of a Spherical Parallel Manipulator Using a Two-Level Approach , 2001, DAC 2001.

[2]  Jorge Angeles,et al.  A robust forward-displacement analysis of spherical parallel robots , 2009 .

[3]  G. Chicco,et al.  Performance of Grid-Connected Photovoltaic Systems in Fixed and Sun-Tracking Configurations , 2007, 2007 IEEE Lausanne Power Tech.

[4]  Ishtiaq Maqsood,et al.  Development of a low cost sun sensor using quadphotodiode , 2010, IEEE/ION Position, Location and Navigation Symposium.

[5]  M. Ruggieri,et al.  Analog solar sensor as payload in edusat satellite , 2010, 2010 IEEE Aerospace Conference.

[6]  Leopoldo García Franquelo,et al.  Light source position microsensor , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[7]  Sing Kiong Nguang,et al.  Principles, Design, and Calibration for a Genre of Irradiation Angle Sensors , 2013, IEEE Transactions on Industrial Electronics.

[8]  G. C. Bakos,et al.  Design and construction of a two-axis Sun tracking system for parabolic trough collector (PTC) efficiency improvement , 2006 .

[9]  Gianfranco Rizzo,et al.  A Moving Solar Roof for a Hybrid Solar Vehicle , 2010 .

[10]  Byung-Hoon Lee,et al.  High-Accuracy Image Centroiding Algorithm for CMOS-Based Digital Sun Sensors , 2007 .

[11]  V. Poulek,et al.  A very simple solar tracker for space and terrestrial applications , 2000 .

[12]  Slobodan P. Simonovic,et al.  Role of Remote Sensing in Disaster Management , 2002 .

[13]  Brian Edwards Computer based sun following system , 1978 .

[14]  Almas Shintemirov,et al.  System integration of a solar sensor and a spherical parallel manipulator for a 3-axis solar tracker platform design , 2015, 2015 IEEE/SICE International Symposium on System Integration (SII).

[15]  Zhengming Zhao,et al.  MPPT techniques for photovoltaic applications , 2013 .

[16]  J.A.P. Leijtens,et al.  Micro Digital Sun Sensor: System in a Package , 2004 .

[17]  M. Reina,et al.  MEMS solar sensor testing for satellite applications , 2009, 2009 Spanish Conference on Electron Devices.

[18]  P. Davies,et al.  Sun-tracking mechanism using equatorial and ecliptic axes , 1993 .

[19]  Matteo Rubagotti,et al.  Numerical Optimal Control of a Spherical Parallel Manipulator Based on Unique Kinematic Solutions , 2016, IEEE/ASME Transactions on Mechatronics.

[20]  R. Faranda,et al.  Energy Comparison of Seven MPPT Techniques for PV Systems , 2009 .

[21]  Henk Hakkesteegt,et al.  Micro-Digital Sun Sensor: An imaging sensor for space applications , 2010, 2010 IEEE International Symposium on Industrial Electronics.

[22]  Antonio Luque,et al.  Inspira’s CPV Sun Tracking , 2007 .

[23]  Chee Wei Tan,et al.  A current-mode controlled maximum power point tracking converter for building integrated photovoltaics , 2007, 2007 European Conference on Power Electronics and Applications.