Can overwintering versus diapausing strategy in Daphnia determine match–mismatch events in zooplankton–algae interactions?

Mismatches between predator and prey due to climate change have now been documented for a number of systems. Ultimately, a mismatch may have far-reaching consequences for ecosystem functioning as decoupling of trophic relationships results in trophic cascades. Here, we examine the potential for climate change induced mismatches between zooplankton and algae during spring succession, with a focus on Daphnia and its algal food. Whereas the development of an overwintering population of daphnids may parallel shifts in phytoplankton phenology due to climate warming, changes in the photoperiod–temperature interaction may cause the emerging population of daphnids to hatch too late and mismatch their phytoplankton prey. A decoupling of the trophic relationship between the keystone herbivore Daphnia and its algal prey can result in the absence of a spring clear water phase. We extended an existing minimal model of seasonal dynamics of Daphnia and algae and varied the way the Daphnia population is started in spring, i.e., from free swimming individuals or from hatching resting eggs. Our model results show that temperature affects the timing of peak abundance in Daphnia and algae, and subsequently the timing of the clear water phase. When a population is started from a small inoculum of hatching resting eggs, extreme climate warming (+6°C) results in a decoupling of trophic relationships and the clear water phase fails to occur. In the other scenarios, the trophic relationships between Daphnia and its algal food source remain intact. Analysis of 36 temperate lakes showed that shallow lakes have a higher potential for climate induced match–mismatches, as the probability of active overwintering daphnids decreases with lake depth. Future research should point out whether lake depth is a direct causal factor in determining the presence of active overwintering daphnids or merely indicative for underlying causal factors such as fish predation and macrophyte cover.

[1]  S. Vavrus,et al.  Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model , 1996 .

[2]  R. Primicerio Size-dependent habitat choice in Daphnia galeata Sars and size-structured interactions among zooplankton in a subarctic lake (lake Lombola, Norway) , 2003, Aquatic Ecology.

[3]  David M. Livingstone,et al.  Impact of Secular Climate Change on the Thermal Structure of a Large Temperate Central European Lake , 2003 .

[4]  D. Isermann,et al.  Seasonal Daphnia Biomass in Winterkill and Nonwinterkill Glacial Lakes of South Dakota , 2004 .

[5]  K. Havens,et al.  Dynamics of the exotic Daphnia lumholtzii and native macro‐zooplankton in a subtropical chain‐of‐lakes in Florida, U.S.A. , 2000 .

[6]  Marten Scheffer,et al.  Seasonal dynamics of Daphnia and algae explained as a periodically forced predator-prey system , 1997 .

[7]  A. Wald Tests of statistical hypotheses concerning several parameters when the number of observations is large , 1943 .

[8]  P. Soranno,et al.  An in situ test of the effects of food quality on Daphnia population growth , 1995, Hydrobiologia.

[9]  C. Cáceres,et al.  HOW LONG TO REST: THE ECOLOGY OF OPTIMAL DORMANCY AND ENVIRONMENTAL CONSTRAINT , 2003 .

[10]  W. Lampert,et al.  Effects of elevated temperatures on threshold food concentrations and possible competitive abilities of differently sized cladoceran species , 1997 .

[11]  G. Carvalho,et al.  Resting eggs of lake‐Daphania II. In situ observations on the hatching of eggs and their contribution to population and community structure , 1989 .

[12]  J. Vijverberg,et al.  Population dynamics and production of Daphnia hyalina Leydig and Daphnia cucullata Sars in Tjeukemeer , 1982, Hydrobiologia.

[13]  K. Havens,et al.  Daphnia lumholtzi and Daphnia ambigua: population comparisons of an exotic and a native cladoceran in Lake Okeechobee, Florida , 1999 .

[14]  D. Lüthi,et al.  The role of increasing temperature variability in European summer heatwaves , 2004, Nature.

[15]  M. Scheffer,et al.  Climatic warming causes regime shifts in lake food webs , 2001 .

[16]  D. Ebert,et al.  The cause of parasitic infection in natural populations of Daphnia (Crustacea: Cladocera): the role of host genetics , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[17]  C. Both,et al.  Adjustment to climate change is constrained by arrival date in a long-distance migrant bird , 2001, Nature.

[18]  B. Beisner,et al.  Temperature‐mediated dynamics of planktonic food chains: the effect of an invertebrate carnivore , 1996 .

[19]  N. Hairston,et al.  The effect of diapause emergence on the seasonal dynamics of a zooplankton assemblage , 2000 .

[20]  W. Lampert,et al.  Coexistence of similar genotypes of Daphnia magna in intermittent populations: response to thermal stress , 2004 .

[21]  M. Scheffer,et al.  Top‐Down Control of Cyanobacteria: A Theoretical Analysis , 1999, The American Naturalist.

[22]  Stephan Hülsmann,et al.  The impact of climate change on lakes in the Netherlands: a review , 2005, Aquatic Ecology.

[23]  L. Mastrantuono,et al.  Littoral invertebrates associated with aquatic plants and bioassessment of ecological status in Lake Bracciano (Central Italy) , 2005 .

[24]  S. F. Umani,et al.  An overview of Calanus helgolandicus ecology in European waters , 2005 .

[25]  The influence of year-to-year variations in winter weather on the dynamics of Daphnia and Eudiaptomus in Esthwaite Water, Cumbria , 1999 .

[26]  Dietmar Straile,et al.  North Atlantic Oscillation synchronizes food-web interactions in central European lakes , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[27]  L. Carvalho,et al.  Changes in shallow lake functioning: response to climate change and nutrient reduction , 2003, Hydrobiologia.

[28]  C. Cáceres INTERSPECIFIC VARIATION IN THE ABUNDANCE, PRODUCTION, AND EMERGENCE OF DAPHNIA DIAPAUSING EGGS , 1998 .

[29]  C. McCulloch,et al.  Predicting the effects of climate change on avian life-history traits , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Wolf M. Mooij,et al.  Climate warming causes regime shifts in lake food webs: A reassessment , 2003 .

[31]  Thomas Mehner,et al.  Temperature impact on the midsummer decline of Daphnia galeata: an analysis of long‐term data from the biomanipulated Bautzen Reservoir (Germany) , 2001 .

[32]  F. Margaritora,et al.  Zooplankton abundance and diversity in Lake Bracciano, Latium, Italy , 2002 .

[33]  O. Hoegh‐Guldberg,et al.  Ecological responses to recent climate change , 2002, Nature.

[34]  T. Simčič,et al.  Seasonal dynamics of metabolic activity of the Daphnia community in Lake Bled (Slovenia) , 2004, Hydrobiologia.

[35]  R. Primicerio,et al.  Zooplankton seasonal dynamics in the neighbouring lakes Takvatn and Lombola (Northern Norway) , 1999, Hydrobiologia.

[36]  C. Both,et al.  The effect of climate change on the correlation between avian life‐history traits , 2005 .

[37]  John R. Jones,et al.  Invasion of the exotic cladoceran Daphnia lumholtzi into North American reservoirs , 1995 .

[38]  C. Both,et al.  Climatic effects on timing of spring migration and breeding in a long‐distance migrant, the pied flycatcher Ficedula hypoleuca , 2005 .

[39]  D. Schindler,et al.  Restoration of the food web of an alpine lake following fish stocking , 1999 .

[40]  Jürgen Benndorf,et al.  Possibilities and Limits for Controlling Eutrophication by Biomanipulation , 1995 .

[41]  Humphrey Q. P. Crick,et al.  The impact of climate change on birds: Impact of climate change on birds , 2004 .

[42]  W. Kerfoot,et al.  Competition Among Cladocerans: Nature of the Interaction Between Bosmina and Daphnia , 1982 .

[43]  M. Scheffer,et al.  Minimal models of top‐down control of phytoplankton , 2000 .

[44]  M. Boersma,et al.  Spatial and temporal patterns of sexual reproduction in a hybrid Daphnia species complex , 2004 .

[45]  J. Pijanowska,et al.  Summer diapause in Daphnia as a reaction to the presence of fish , 1996 .

[46]  Z. Gasiūnaitė,et al.  Growth and fecundity of Daphnia after diapause and their impact on the development of a population , 1996, Hydrobiologia.

[47]  J. Talling Phytoplankton-zooplankton seasonal timing and the 'clear-water phase' in some English lakes , 2003 .

[48]  D. Schindler,et al.  The influence of experimental scale on estimating the predation rate of Gammarus lacustris (Crustacea: Amphipoda) on Daphnia in an alpine lake , 2000 .

[49]  M. Matthes Low Genotypic Diversity in a Daphnia Pulex Population in a Biomanipulated Lake: The Lack of Vertical and Seasonal Variability , 2004, Hydrobiologia.

[50]  H. von Storch,et al.  Interannual variability of seasonal succession events in a temperate lake and its relation to temperature variability , 1997 .

[51]  Daniel E. Schindler,et al.  Climatic effects on the phenology of lake processes , 2004 .

[52]  T. Blenckner,et al.  Changes of the plankton spring outburst related to the North Atlantic Oscillation , 1999 .

[53]  P. Murtaugh Vertical distributions of zooplankton and population dynamics of Daphnia in a meromictic lake , 1985, Hydrobiologia.

[54]  R. Sterner,et al.  Extreme cyclomorphosis in Daphnia lumholtzi , 1992 .

[55]  E. Post,et al.  Synchronization of animal population dynamics by large-scale climate , 2002, Nature.

[56]  J. W. Budd,et al.  Winter storms: Sequential sediment traps record Daphnia ephippial production, resuspension, and sediment interactions , 2004 .

[57]  O. Hüppop,et al.  North Atlantic Oscillation and timing of spring migration in birds , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[58]  M. Slusarczyk,et al.  FOOD THRESHOLD FOR DIAPAUSE IN DAPHNIA UNDER THE THREAT OF FISH PREDATION , 2001 .

[59]  J. Heller Life history strategies. , 2001 .

[60]  D. Schindler,et al.  Variation in spatial and temporal gradients in zooplankton spring development: the effect of climatic factors , 2005 .

[61]  L. Meester,et al.  Hatching of cladoceran resting eggs: temperature and photoperiod , 2005 .

[62]  P. Hebert,et al.  Methods for the activation of the resting eggs of Daphnia , 1987 .

[63]  W. Ambrosetti,et al.  Physical limnology of Italian lakes. 1. Relationship between morphometry and heat content , 2002 .

[64]  Erik Jeppesen,et al.  Climatic warming and regime shifts in lake food webs—some comments , 2003 .

[65]  J. C. Hill,et al.  PHOTOPERIOD CONTROL OF WINTER DIAPAUSE IN THE FRESH-WATER CRUSTACEAN, DAPHNIA , 1968 .

[66]  W. Lampert The dynamics of Daphnia magna in a shallow lake , 1991 .

[67]  C. Cáceres,et al.  Incidence of diapause varies among populations of Daphnia pulicaria , 2004, Oecologia.

[68]  H. Löffler,et al.  Neusiedlersee: The Limnology of a Shallow Lake in Central Europe , 1979, Monographiae Biologicae.

[69]  Hughes,et al.  Biological consequences of global warming: is the signal already apparent? , 2000, Trends in ecology & evolution.

[70]  Thomas Hintze,et al.  Effects of ice duration on plankton succession during spring in a shallow polymictic lake , 1999 .

[71]  S. Schneider,et al.  Fingerprints of global warming on wild animals and plants , 2003, Nature.

[72]  P. Yurista Temperature‐dependent energy budget of an Arctic Cladoceran, Daphnia middendorffiana , 1999 .

[73]  Atle Mysterud,et al.  Climate, changing phenology, and other life history traits: Nonlinearity and match–mismatch to the environment , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[74]  D. G. George,et al.  UK lake plankton and the Gulf Stream , 1995, Nature.

[75]  E. Jeppesen,et al.  Trophic dynamics in turbid and clearwater lakes with special emphasis on the role of zooplankton for water clarity , 1999, Hydrobiologia.

[76]  W. R. Demott SEASONAL SUCCESSION IN A NATURAL DAPHNIA ASSEMBLAGE , 1983 .

[77]  D. Straile Meteorological forcing of plankton dynamics in a large and deep continental European lake , 2000, Oecologia.

[78]  J. Hurrell Influence of variations in extratropical wintertime teleconnections on northern hemisphere temperature , 1996 .

[79]  D. Straile,et al.  The impact of the interannual variability in hydrodynamic conditions on the plankton development in Lake Constance in spring and summer , 1998 .

[80]  Frederick J. Wrona,et al.  The influence of temperature and food chain length on plankton predatorprey dynamics , 1997 .

[81]  T. Simčič,et al.  Respiratory electron transport system (ETS) activity as an estimator of the thermal tolerance of two Daphnia hybrids , 2004 .

[82]  Ulrich Sommer,et al.  The PEG-model of seasonal succession of planktonic events in fresh waters , 1986, Archiv für Hydrobiologie.

[83]  Å. Lindström,et al.  Timing of spring migration in birds: long-term trends, North Atlantic Oscillation and the significance of different migration routes , 2005 .

[84]  D. Ebert,et al.  Associations between parasitism and host genotype in natural populations of Daphnia (Crustacea : Cladocera) , 1999 .

[85]  J. Hurrell,et al.  The North Atlantic Oscillation , 2001, Science.

[86]  Søren E. Larsen,et al.  Does resuspension prevent a shift to a clear state in shallow lakes during reoligotrophication? , 2003 .

[87]  Markus Ahola,et al.  Variation in climate warming along the migration route uncouples arrival and breeding dates , 2004 .

[88]  P. Hebert,et al.  Daphnia lumholtzi in North America: Another exotic zooplankter , 1993 .

[89]  Daniel E. Schindler,et al.  CLIMATE CHANGE UNCOUPLES TROPHIC INTERACTIONS IN AN AQUATIC ECOSYSTEM , 2004 .

[90]  E. Jeppesen,et al.  Impact of fish predation on cladoceran body weight distribution and zooplankton grazing in lakes during winter , 2004 .

[91]  Free-swimming Daphnia pulex can avoid following Stokes' law , 1996 .

[92]  Lars Gustafsson,et al.  Large–scale geographical variation confirms that climate change causes birds to lay earlier , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[93]  Marcel E. Visser,et al.  Warmer springs lead to mistimed reproduction in great tits (Parus major) , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[94]  D. H. Cushing,et al.  Plankton Production and Year-class Strength in Fish Populations: an Update of the Match/Mismatch Hypothesis , 1990 .

[95]  G. Carvalho,et al.  Resting eggs of lake‐ Daphnia I. Distribution, abundance and hatching of eggs collected from various depths in lake sediments , 1989 .

[96]  Gian-Reto Walther,et al.  An ecological ‘footprint’ of climate change , 2005, Proceedings of the Royal Society B: Biological Sciences.

[97]  H. Stich Spatial and temporal heterogeneity of Daphnia in Lake Constance; intra- and interspecific comparisons. , 1992 .

[98]  D. Straile,et al.  Allochronic differentiation among Daphnia species, hybrids and backcrosses: the importance of sexual reproduction for population dynamics and genetic architecture , 2004, Journal of evolutionary biology.

[99]  M. Edwards,et al.  Impact of climate change on marine pelagic phenology and trophic mismatch , 2004, Nature.

[100]  Nathan P. Nibbelink,et al.  Potential effects of global climate change on small north-temperate lakes: Physics, fish, and plankton , 1996 .

[101]  R. Adrian,et al.  Possible impact of mild winters on zooplankton succession in eutrophic lakes of the Atlantic European area , 1996 .

[102]  G. Yohe,et al.  A globally coherent fingerprint of climate change impacts across natural systems , 2003, Nature.

[103]  Dieter Gerten,et al.  Climate‐driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation , 2000 .

[104]  Marcel E. Visser,et al.  Warmer springs disrupt the synchrony of oak and winter moth phenology , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[105]  S. Hülsmann Recruitment patterns of Daphnia: a key for understanding midsummer declines? , 2004, Hydrobiologia.

[106]  J. Pijanowska Cyclomorphosis in Daphnia: an adaptation to avoid invertebrate predation , 1990, Hydrobiologia.

[107]  J. Bruce Impact of climate change , 1995, Nature.

[108]  J. Lennon,et al.  Influence of Temperature on Exotic Daphnia lumholtzi and Implications for Invasion Success , 2001 .

[109]  M. Noguer,et al.  Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change , 2002 .

[110]  R. Hughes,et al.  The effect of food availability, female culture-density and photoperiod on ephippia production in Daphnia magna Straus (Crustacea: Cladocera) , 1983 .

[111]  D. Innes Sexual reproduction of Daphnia pulex in a temporary habitat , 1997, Oecologia.

[112]  N. Yoccoz,et al.  Phenology and abundance in relation to climatic variation in a sub-arctic insect herbivore–mountain birch system , 2005, Oecologia.

[113]  Luigi Naselli-Flores,et al.  Phytoplankton dynamics and structure: a comparative analysis in natural and man-made water bodies of different trophic state , 2000, Hydrobiologia.

[114]  N. Kamjunke,et al.  THE STRUCTURE-FORMING IMPACT OF ZOOPLANKTON ON PHYTOPLANKTON IN A WHOLE-LAKE BIOMANIPULATION EXPERIMENT , 1997 .

[115]  L. Rudstam,et al.  Impact of zebra mussels (Dreissena polymorpha) on the pelagic lower trophic levels of Oneida Lake, New York , 2001 .

[116]  C. Cáceres,et al.  To sink or swim: Variable diapause strategies among Daphnia species , 2004 .

[117]  M. Dokulil,et al.  Trophic relationships in the pelagic zone of Mondsee, Austria , 1990, Hydrobiologia.

[118]  D. Tappa The Dynamics of the Association of Six Limnetic Species of Daphnia in Aziscoos Lake, Maine , 1965 .

[119]  J. Havel,et al.  Competition Between Native and Exotic Daphnia: In situ Experiments , 2001 .

[120]  D. Straile,et al.  A comparison of egg‐bank and long‐term plankton dynamics of two Daphnia species, D. hyalina and D. galeata: Potentials and limits of reconstruction , 2003 .

[121]  K. Rothhaupt,et al.  Alternating dynamics of rotifers and Daphnia magna in a shallow lake , 1991, Archiv für Hydrobiologie.

[122]  C. Folt,et al.  Ecophysiological responses to warming events by two sympatric zooplankton species , 2002 .

[123]  M. Ślusarczyk Predator-induced diapause in Daphnia magna may require two chemical cues , 1999, Oecologia.

[124]  G. Hays,et al.  Climate change and marine plankton. , 2005, Trends in ecology & evolution.

[125]  M. Gyllström Induction and termination of diapause in a freshwater zooplankton community , 2004 .

[126]  M. Ślusarczyk Predator‐Induced Diapause in Daphnia , 1995 .

[127]  Arthur Mangun Banta,et al.  Studies on the physiology, genetics, and evolution of some Cladocera , 1939 .

[128]  Luigi Naselli-Flores,et al.  Importance of water-level fluctuation on population dynamics of cladocerans in a hypertrophic reservoir (Lake Arancio, south-west Sicily, Italy) , 1997, Hydrobiologia.

[129]  C. Cáceres,et al.  How well do laboratory experiments explain field patterns of zooplankton emergence , 2001 .

[130]  K. Ulrich Effects of land use in the drainage area on phosphorus binding and mobility in the sediments of four drinking-water reservoirs , 1997, Hydrobiologia.

[131]  Dietmar Straile,et al.  The North Atlantic Oscillation and plankton dynamics in two European lakes –‐ two variations on a general theme , 2000 .

[132]  C. Folt,et al.  Consequences of fall warming for zooplankton over wintering success , 1996 .