Accelerated discovery of oxidation-resistant ultra-high temperature ceramics via data driven methodology

[1]  Ambreen Nisar,et al.  Predicting oxidation damage of ultra high-temperature carbide ceramics in extreme environments using machine learning , 2023, Ceramics International.

[2]  A. Tewari,et al.  Interval prediction machine learning models for predicting experimental thermal conductivity of high entropy alloys , 2022, Computational Materials Science.

[3]  M. Yuen,et al.  Machine learning-assisted mechanical property prediction and descriptor-property correlation analysis of high-entropy ceramics , 2022, Ceramics International.

[4]  Jiaxin Zhang,et al.  Machine Learning for High-entropy Alloys: Progress, Challenges and Opportunities , 2022, Progress in Materials Science.

[5]  Kun Wang,et al.  The intrinsic strength prediction by machine learning for refractory high entropy alloys , 2022, Tungsten.

[6]  Ambreen Nisar,et al.  Predicting oxidation damage in ultra high-temperature borides: A machine learning approach , 2022, Ceramics International.

[7]  Z. Ma,et al.  Exploration of the oxidation and ablation resistance of ultra-high-temperature ceramic coatings using machine learning , 2022, Ceramics International.

[8]  Q. Fu,et al.  High-entropy (Hf0.25Zr0.25Ti0.25Cr0.25)B2 ceramic incorporated SiC-Si composite coating to protect C/C composites against ablation above 2400 K , 2022, Ceramics International.

[9]  Daniel J. Delia,et al.  The Oxidation-Resistance Mechanism of Wtanbtial Refractory High Entropy Alloy , 2022, SSRN Electronic Journal.

[10]  Z. Balak,et al.  Oxidation-affected zone in the sintered ZrB2–SiC–HfB2 composites , 2022, Synthesis and Sintering.

[11]  K. Biswas,et al.  Machine learning based approach for phase prediction in high entropy borides , 2022, Ceramics International.

[12]  Yaoxu Xiong,et al.  Design high-entropy carbide ceramics from machine learning , 2022, npj Computational Materials.

[13]  K. Hamad,et al.  Machine learning guided discovery of super-hard high entropy ceramics , 2022, Materials Letters.

[14]  S. Dewangan,et al.  Application of artificial neural network for prediction of high temperature oxidation behavior of AlCrFeMnNiWx (X = 0, 0.05, 0.1, 0.5) high entropy alloys , 2022, International Journal of Refractory Metals and Hard Materials.

[15]  Yonggang Yan,et al.  Accelerated discovery of single-phase refractory high entropy alloys assisted by machine learning , 2021 .

[16]  Corson L. Cramer,et al.  Zirconium-diboride silicon-carbide composites: A review , 2021, Ceramics International.

[17]  M. Balat-Pichelin,et al.  Oxidation resistance of Zr- and Hf-diboride composites containing SiC in air plasma up to 2600 K for aerospace applications , 2021, Ceramics International.

[18]  K. Vecchio,et al.  Development of ultrahigh-entropy ceramics with tailored oxidation behavior , 2021 .

[19]  D. Fang,et al.  Review on mechanics of ultra-high-temperature materials , 2021, Acta Mechanica Sinica.

[20]  Yong Du,et al.  Phase equilibria in the ZrO2-Ta2O5-Nb2O5 system: experimental studies and thermodynamic modeling , 2021 .

[21]  B. Tossey,et al.  High temperature oxidation of corrosion resistant alloys from machine learning , 2021, npj Materials Degradation.

[22]  G. Hilmas,et al.  Superhard high-entropy AlB2-type diboride ceramics , 2021, Scripta Materialia.

[23]  Yiguang Wang,et al.  Oxidation behavior of high-entropy carbide (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C at 1400–1600 °C , 2021 .

[24]  L. Silvestroni,et al.  Influence of chromium diboride on the oxidation resistance of ZrB2-MoSi2 and ZrB2-SiC ceramics , 2021 .

[25]  Y. Yoo,et al.  Regression analysis of high-temperature oxidation of Ni-based superalloys using artificial neural network , 2021 .

[26]  M. Heilmaier,et al.  Current Status of Research on the Oxidation Behavior of Refractory High Entropy Alloys , 2021, Advanced Engineering Materials.

[27]  Klavs F. Jensen,et al.  Toward Machine Learning-Enhanced High-Throughput Experimentation , 2021, Trends in Chemistry.

[28]  Yun-qiang Wang,et al.  Phase prediction of Ni-base superalloys via high-throughput experiments and machine learning , 2021 .

[29]  K. Balani,et al.  Oxidation kinetics of ZrB2-and HfB2-powders and their SiC reinforced composites , 2020 .

[30]  Z. Wang,et al.  Neural network model for correlating microstructural features and hardness properties of nickel-based superalloys , 2020 .

[31]  K. Vecchio,et al.  Searching for high entropy alloys: A machine learning approach , 2020 .

[32]  Alexander S. Rosengarten,et al.  Discovery of high-entropy ceramics via machine learning , 2020, npj Computational Materials.

[33]  Z. Balak,et al.  HfB2-doped ZrB2-30 vol.% SiC composites: oxidation resistance behavior , 2020, Materials Research Express.

[34]  K. Balani,et al.  Solid solutioning in ZrB2 with HfB2: Effect on densification and oxidation resistance , 2019, International Journal of Refractory Metals and Hard Materials.

[35]  A. Navrotsky,et al.  In‐situ determination of the HfO 2 –Ta 2 O 5 ‐temperature phase diagram up to 3000°C , 2019, Journal of the American Ceramic Society.

[36]  M. Harmer,et al.  Materials informatics for the screening of multi-principal elements and high-entropy alloys , 2019, Nature Communications.

[37]  S. Rizal,et al.  The Effect of Chemical Composition on Grain Size and Formability of the Free-Lead Cu-30Zn Alloy: A Short Review , 2019, IOP Conference Series: Materials Science and Engineering.

[38]  Turab Lookman,et al.  Machine learning assisted design of high entropy alloys with desired property , 2019, Acta Materialia.

[39]  H. Zhuang,et al.  Machine-learning phase prediction of high-entropy alloys , 2019, Acta Materialia.

[40]  P. Feng,et al.  Dynamic oxidation protective ultrahigh temperature ceramic TaB2-20%wtSiC composite coating for carbon material , 2019, Composites Part B: Engineering.

[41]  M. Lewandowska,et al.  The effect of grain size and grain boundary misorientation on the corrosion resistance of commercially pure aluminium , 2019, Corrosion Science.

[42]  S. Foucaud,et al.  Sintering and oxidation behavior of HfB2-SiC composites from 0 to 30 vol% SiC between 1450 and 1800 K , 2019, Ceramics International.

[43]  Hejun Li,et al.  Initial oxidation of ZrB2(0 0 0 1) from first-principles calculations , 2018, Computational Materials Science.

[44]  Hejun Li,et al.  High temperature oxidation resistance of La2O3-modified ZrB2-SiC coating for SiC-coated carbon/carbon composites , 2018, Journal of Alloys and Compounds.

[45]  Wenjiang Huang,et al.  Machine learning for phase selection in multi-principal element alloys , 2018, Computational Materials Science.

[46]  Y. Kubota,et al.  Oxidation of ZrB2 and its composites: a review , 2018, Journal of Materials Science.

[47]  Christopher Wolverton,et al.  Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments , 2018, Science Advances.

[48]  Lv Jinlong Effect of grain size on mechanical property and corrosion resistance of the Ni-based alloy 690 , 2017 .

[49]  K. Ray,et al.  Effect of Si3N4 Addition on Oxidation Resistance of ZrB2-SiC Composites , 2017 .

[50]  R. Arróyave,et al.  Real-time atomistic observation of structural phase transformations in individual hafnia nanorods , 2017, Nature Communications.

[51]  G. Hilmas,et al.  Ultra-high temperature ceramics: Materials for extreme environments , 2017 .

[52]  Tyler J. Harrington,et al.  High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics , 2016, Scientific Reports.

[53]  D. Fang,et al.  Fabrication and characterization of B4C–ZrB2–SiC ceramics with simultaneously improved high temperature strength and oxidation resistance up to 1600 °C , 2016 .

[54]  Chris Edwards,et al.  Growing pains for deep learning , 2015, Commun. ACM.

[55]  Hejun Li,et al.  TaxHf1−xB2–SiC multiphase oxidation protective coating for SiC-coated carbon/carbon composites , 2014 .

[56]  I. Kim,et al.  Modelling high temperature oxidation behaviour of Ni–Cr–W–Mo alloys with Bayesian neural network , 2014 .

[57]  G. Hilmas,et al.  Mechanical behavior of zirconium diboride–silicon carbide ceramics at elevated temperature in air , 2013 .

[58]  K. Burke Perspective on density functional theory. , 2012, The Journal of chemical physics.

[59]  T. Parthasarathy,et al.  Oxidation Resistance of Hafnium Diboride Ceramics with Additions of Silicon Carbide and Tungsten Boride or Tungsten Carbide , 2011 .

[60]  William E Lee,et al.  Toward Oxidation-Resistant ZrB2-SiC Ultra High Temperature Ceramics , 2011 .

[61]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[62]  Guo‐Jun Zhang,et al.  Hot Pressed HfB2 and HfB2–20 vol%SiC Ceramics Based on HfB2 Powder Synthesized by Borothermal Reduction of HfO2* , 2010 .

[63]  Guo‐Jun Zhang,et al.  Oxidation resistance and strength retention of ZrB2–SiC ceramics , 2010 .

[64]  R. Orrú,et al.  Synthesis, densification and characterization of TaB2–SiC composites , 2010 .

[65]  Jiecai Han,et al.  Effect of Various Additives on the Oxidation Behavior of ZrB2‐Based Ultra‐High‐Temperature Ceramics at 1800°C , 2010 .

[66]  S. Tolbert,et al.  Advancements in the Search for Superhard Ultra‐Incompressible Metal Borides , 2009 .

[67]  C. Carney Oxidation resistance of hafnium diboride—silicon carbide from 1400 to 2000 °C , 2009 .

[68]  Y. Waseda,et al.  An update on the thermodynamics of Ta2O5 , 2009 .

[69]  R. Rapp,et al.  Effects of Phase Change and Oxygen Permeability in Oxide Scales on Oxidation Kinetics of ZrB2 and HfB2 , 2009 .

[70]  R. Speyer,et al.  Effect of SiC, TaB_2 and TaSi_2 additives on the isothermal oxidation resistance of fully dense zirconium diboride , 2009 .

[71]  Jiecai Han,et al.  Preparation and Thermal Ablation Behavior of HfB2–SiC-Based Ultra-High-Temperature Ceramics Under Severe Heat Conditions , 2009 .

[72]  J. Halloran,et al.  Oxidation of ZrB2–SiC: Influence of SiC Content on Solid and Liquid Oxide Phase Formation , 2009 .

[73]  J. Zaykoski,et al.  High‐Temperature Chemistry and Oxidation of ZrB2 Ceramics Containing SiC, Si3N4, Ta5Si3, and TaSi2 , 2008 .

[74]  R. Speyer,et al.  Oxidation Resistance of Fully Dense ZrB2 with SiC, TaB2, and TaSi2 Additives , 2008 .

[75]  M. Nygren,et al.  Densification and Mechanical Behavior of HfC and HfB2 Fabricated by Spark Plasma Sintering , 2008 .

[76]  Jiecai Han,et al.  Oxidation behavior of zirconium diboride-silicon carbide at 1800 °C , 2007 .

[77]  J. Matsushita,et al.  Oxidation Behavior of Tantalum Boride Ceramics , 2007 .

[78]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[79]  Mark M. Opeka,et al.  A Model for the Oxidation of ZrB2, HfB2 and TiB2 (Postprint) , 2007 .

[80]  William G. Fahrenholtz,et al.  Oxidation of Zirconium Diboride–Silicon Carbide at 1500°C at a Low Partial Pressure of Oxygen , 2006 .

[81]  Rajiv K. Kalia,et al.  A Perspective on Modeling Materials in Extreme Environments: Oxidation of Ultrahigh-Temperature Ceramics , 2006 .

[82]  A. Bellosi,et al.  The resistance to oxidation of an HfB2–SiC composite , 2005 .

[83]  J. Zaykoski,et al.  Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: Theoretical considerations and historical experience , 2004 .

[84]  E. Opila,et al.  Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: Effect of Ta additions , 2004 .

[85]  Alida Bellosi,et al.  Microstructure and Properties of an HfB2‐SiC Composite for Ultra High Temperature Applications , 2004 .

[86]  Alida Bellosi,et al.  Oxidation of ZrB2-Based Ceramics in Dry Air , 2003 .

[87]  S. Levine,et al.  Tantalum Addition to Zirconium Diboride for Improved Oxidation Resistance , 2003 .

[88]  Hironobu Takahashi,et al.  Evaporation of Cr2O3 in Atmospheres Containing H2O , 2003 .

[89]  P. Werner,et al.  Structures and phase transitions of B-Ta2O5 and Z-Ta2O5: two high-pressure forms of Ta2O5. , 2000, Acta crystallographica. Section B, Structural science.

[90]  J V Tu,et al.  Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. , 1996, Journal of clinical epidemiology.

[91]  H. C. Graham,et al.  The High‐Temperature Oxidation Behavior of a HfB2 + 20 v / o SiC Composite , 1975 .

[92]  H. H. Davis,et al.  Oxidation/Vaporization Kinetics of Cr2O3 , 1971 .

[93]  W. Baun Phase Transformation at High Temperatures in Hafnia and Zirconia , 1963, Science.

[94]  Zi-kui Liu,et al.  Integrating data mining and machine learning to discover high-strength ductile titanium alloys , 2021 .

[95]  Feng He,et al.  Uncovering the Eutectics Design by Machine Learning in the Al-Co-Cr-Fe-Ni High Entropy System , 2020, Acta Materialia.

[96]  T. Wen,et al.  High‐temperature oxidation behavior of (Hf 0.2 Zr 0.2 Ta 0.2 Nb 0.2 Ti 0.2 )C high‐entropy ceramics in air , 2019, Journal of the American Ceramic Society.

[97]  G. Song,et al.  Surface processing and alloying to improve the corrosion resistance of magnesium (Mg) alloys , 2013 .

[98]  K. Ray,et al.  Oxidation behavior of hot pressed ZrB2-SiC and HfB2-SiC composites , 2011 .

[99]  E. Opila,et al.  UHTCs: Ultra-High Temperature Ceramic Materials for Extreme Environment Applications , 2007 .

[100]  G. Hilmas,et al.  Evolution of structure during the oxidation of zirconium diboride–silicon carbide in air up to 1500 °C , 2007 .

[101]  G. G. Mikhailov,et al.  Phase diagram of the system: ZrO2–Cr2O3 , 2001 .