Dynamics of Microstructure in the Early Stages of Ion Beam Assisted Film Growth

Recent progress in low energy ion-surface interactions, and the early stages of ion-assisted epitaxy of semiconductor thin films is described. Advances in three areas are discussed: dynamics of displacements and defect incorporation, nucleation mechanisms, and the use of ion bombardment to modify epitaxial growth kinetics in a truly surface-selective manner.

[1]  Choi,et al.  Suppression of three-dimensional island nucleation during GaAs growth on Si(100). , 1991, Physical review letters.

[2]  Tsao,et al.  Layer-by-layer sputtering and epitaxy of Si(100). , 1991, Physical review letters.

[3]  L. Hultman,et al.  Effect of nucleation mechanism on planar defects in InAs on Si (100) , 1990 .

[4]  C. J. Tsai,et al.  Strain modification in coherent Ge and SixGe1–x epitaxial films by ion-assisted molecular beam epitaxy , 1990 .

[5]  D. G. Armour,et al.  Radiation damage in silicon (001) due to low energy (60–510 eV) argon ion bombardment , 1990 .

[6]  H. Atwater,et al.  Ion irradiation enhanced crystal nucleation in amorphous Si thin films , 1990 .

[7]  S. T. Picraux,et al.  Ion beam enhanced epitaxial growth of Ge (001) , 1990 .

[8]  S. T. Picraux,et al.  Surface roughening of Ge(001) during 200 eV Xe ion bombardment and Ge molecular beam epitaxy , 1990 .

[9]  M. Lagally,et al.  Microscopic Aspects of the Initial Stages of Epitaxial Growth. A scanning Tunneling Microscopy Study , 1990 .

[10]  S. T. Picraux,et al.  Near-threshold energy dependence of Xe-induced displacements on Ge(001)☆ , 1990 .

[11]  S. Barnett,et al.  Nucleation and epitaxial growth of InAs on Si (100) by ion‐assisted deposition , 1989 .

[12]  Tadahiro Ohmi,et al.  Formation of device‐grade epitaxial silicon films at extremely low temperatures by low‐energy bias sputtering , 1989 .

[13]  S. T. Picraux,et al.  Partitioning of ion-induced surface and bulk displacements☆ , 1989 .

[14]  T. E. Haynes,et al.  Heteroepitaxy of 76Ge films on GaAs by direct deposition from a low‐energy ion beam , 1989 .

[15]  T. E. Haynes,et al.  Heteroepitaxy of GaAs on Si and Ge using alternating, low‐energy ion beams , 1989 .

[16]  S. T. Picraux,et al.  Low-energy ion beams, molecular beam epitaxy, and surface morphology , 1989 .

[17]  S. T. Picraux,et al.  Dynamics of growth roughening and smoothening on Ge (001) , 1989 .

[18]  R. M. Warner,et al.  Substituting low-energy (<30 eV) ion bombardment for elevated temperature in silicon epitaxy , 1988 .

[19]  Atwater,et al.  Interface-limited grain-boundary motion during ion bombardment. , 1988, Physical review letters.

[20]  Greene,et al.  Domain structure in epitaxial metastable zinc-blende (GaAs)1-x(Ge2)x(001) alloys. , 1987, Physical review. B, Condensed matter.

[21]  J. Comfort,et al.  Silicon surface cleaning by low dose argon‐ion bombardment for low‐temperature (750 °C) epitaxial silicon deposition. I. Process considerations , 1987 .

[22]  J. Comfort,et al.  Silicon surface cleaning by low dose argon‐ion bombardment for low‐temperature (750 °C) epitaxial deposition. II. Epitaxial quality , 1987 .

[23]  Scott A. Barnett,et al.  Nucleation and initial growth of In deposited on Si3N4 using low‐energy (≤300 eV) accelerated beams in ultrahigh vacuum , 1987 .

[24]  J. Greene Summary Abstract: Crystal growth, atomic ordering, and physical properties of epitaxial metastable semiconductors , 1987 .

[25]  S. Pennycook,et al.  Ion-solid interactions during ion beam deposition of 74Ge and 30Si on Si at very low ion energies (0–200 eV range)☆ , 1986 .

[26]  S. Komiya,et al.  A Molecular and Ion-Beam Epitaxy System for the Growth of III-V Compound Semiconductors Using a Mass-Separated, Low-Energy Group-V Ion Beam , 1985 .

[27]  S. Komiya,et al.  Molecular Beam Epitaxy of InP Using Low Energy P+ Ion Beam , 1985 .

[28]  P. Zalm,et al.  Ion beam epitaxy of silicon on Ge and Si at temperatures of 400 K , 1982 .

[29]  M. Yu Thermal regrowth of silicon(111) surface during ion bombardment , 1982 .

[30]  J. Greene,et al.  Growth of single‐crystal metastable semiconducting (GaSb)1−xGex films , 1981 .

[31]  N. Natsuaki,et al.  Low-energy mass-separated ion beam deposition of materials , 1981 .

[32]  S. Komiya,et al.  Simultaneous RHEED AES QMS study on epitaxial Si film growth on Si(111) and sapphire (1̄102) surfaces by partially ionized vapour deposition , 1979 .

[33]  G. E. Becker,et al.  Dependence of residual damage on temperature during Ar+ sputter cleaning of silicon , 1977 .

[34]  T. Tokuyama,et al.  Germanium and Silicon Film Growth by Low-Energy Ion Beam Deposition , 1977 .

[35]  H. Atwater,et al.  Low Energy Ar Ion Bombardment of (001) Si: Defects and Surface Morphology , 1991 .

[36]  H. Atwater,et al.  Island Evolution During Early Stages of Ion-Assisted Film Growth: Ge ON SiO 2 , 1991 .

[37]  Max G. Lagally,et al.  Kinetics of ordering and growth at surfaces , 1990 .

[38]  J. Berg,et al.  Evidence for competing growth phases in ion-beam-deposited epitaxial silicon films , 1990 .

[39]  S. Barnett,et al.  Ion-Surface Interactions During Epitaxy , 1990 .

[40]  H. Atwater,et al.  Surface and Near-Surface Atom Dynamics During Low Energy Xe Ion Bombardment of Si and Fcc Surfaces , 1990 .

[41]  C. J. Tsai,et al.  Strain Modification and Thermal Stability of Si x Ge 1−x Films Grown by Ion-Assisted Molecular Beam Epitaxy , 1990 .

[42]  J. Greene,et al.  Epitaxial crystal growth by sputter deposition: Applications to semiconductors. Part 2 , 1983 .