Crystallization Kinetics of GeSbTe Phase-Change Nanoparticles Resolved by Ultrafast Calorimetry

Although nanostructured phase-change materials (PCMs) are considered as the building blocks of next-generation phase-change memory and other emerging optoelectronic applications, the kinetics of the crystallization, the central property in switching, remains ambiguous in the high-temperature regime. Therefore, we present here an innovative exploration of the crystallization kinetics of Ge2Sb2Te5 (GST) nanoparticles (NPs) exploiting differential scanning calorimetry with ultrafast heating up to 40 000 K s–1. Our results demonstrate that the non-Arrhenius thermal dependence of viscosity at high temperature becomes an Arrhenius-like behavior when the glass transition is approached, indicating a fragile-to-strong (FS) crossover in the as-deposited amorphous GST NPs. The overall crystal growth rate of the GST NPs is unraveled as well. This unique feature of the FS crossover is favorable for memory applications as it is correlated to improved data retention. Furthermore, we show that methane incorporation during NP production enhances the stability of the amorphous NP phase (and thereby data retention), while a comparable maximum crystal growth rate is still observed. These results offer deep insight into the crystallization kinetics of nanostructured GST, paving the way for designing nonvolatile memories with PCM dimensions smaller than 20 nm.

[1]  T. Topuria,et al.  Irreversible reactions studied with nanosecond transmission electron microscopy movies: Laser crystallization of phase change materials , 2013 .

[2]  Homer E. KlSSlNGER Reaction Kinetics in Differential Thermal Analysis , 1957 .

[3]  Matthias Wuttig,et al.  Measurement of crystal growth velocity in a melt-quenched phase-change material , 2013, Nature Communications.

[4]  M D Ediger,et al.  Spatially heterogeneous dynamics in supercooled liquids. , 2003, Annual review of physical chemistry.

[5]  M. Fontana,et al.  Crystallization process on amorphous GeTeSb samples near to eutectic point Ge15Te85 , 2009 .

[6]  Gary S. Grest,et al.  Liquid-glass transition, a free-volume approach , 1979 .

[7]  Doorn,et al.  Calorimetric evidence for structural relaxation in amorphous silicon. , 1989, Physical review letters.

[8]  C. Angell,et al.  Formation of Glasses from Liquids and Biopolymers , 1995, Science.

[9]  Y. K. Kim,et al.  Phase separation of a Ge2Sb2Te5 alloy in the transition from an amorphous structure to crystalline structures , 2006 .

[10]  John C. Mauro,et al.  Viscosity of glass-forming liquids , 2009, Proceedings of the National Academy of Sciences.

[11]  M. Wuttig,et al.  Crystallization kinetics in antimony and tellurium alloys used for phase change recording , 2006 .

[12]  Li-Min Wang,et al.  An upper limit to kinetic fragility in glass-forming liquids. , 2011, The Journal of chemical physics.

[13]  I. Kaban,et al.  Viscosity of liquid Ag-In-Sb-Te: Evidence of a fragile-to-strong crossover. , 2016, The Journal of chemical physics.

[14]  Kaori Ito,et al.  Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water , 1999, Nature.

[15]  J. Tominaga,et al.  What is the Origin of Activation Energy in Phase-Change Film? , 2009 .

[16]  Mehdi Asheghi,et al.  Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase. , 2014, Nano letters.

[17]  Wei Chong,et al.  Thickness Dependent Nano-Crystallization in Ge2Sb2Te5 Films and Its Effect on Devices , 2006 .

[18]  Daniel Krebs,et al.  Crystal growth within a phase change memory cell , 2014, Nature Communications.

[19]  Behrad Gholipour,et al.  Characterization of supercooled liquid Ge 2 Sb 2 Te 5 and its crystallization by ultrafast-heating calorimetry SUPPLEMENTARY INFORMATION , 2012 .

[20]  Daniele Ielmini,et al.  Evidence for Non-Arrhenius Kinetics of Crystallization in Phase Change Memory Devices , 2013, IEEE Transactions on Electron Devices.

[21]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[22]  M. Wuttig,et al.  Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys , 2004 .

[23]  D. Ielmini,et al.  Phase change materials and their application to nonvolatile memories. , 2010, Chemical reviews.

[24]  J. Mauro,et al.  Fragile-to-strong transition in metallic glass-forming liquids. , 2010, The Journal of chemical physics.

[25]  A. Petford-Long,et al.  Determination of the isothermal nucleation and growth parameters for the crystallization of thin Ge2Sb2Te5 films , 2002 .

[26]  B. Kooi,et al.  Crystallization Kinetics of Supercooled Liquid Ge–Sb Based on Ultrafast Calorimetry , 2016 .

[27]  Bart J. Kooi,et al.  Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles , 2016, Scientific Reports.

[28]  Valerio Pruneri,et al.  Active Control of Surface Plasmon Waveguides with a Phase Change Material , 2015 .

[29]  C. David Wright,et al.  An optoelectronic framework enabled by low-dimensional phase-change films , 2014, Nature.

[30]  Harish Bhaskaran,et al.  Integrated all-photonic non-volatile multi-level memory , 2015, Nature Photonics.

[31]  Aaron M. Lindenberg,et al.  How Supercooled Liquid Phase-Change Materials Crystallize: Snapshots after Femtosecond Optical Excitation , 2015 .

[32]  Se-Ho Lee,et al.  Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. , 2007, Nature nanotechnology.

[33]  Young-Chang Joo,et al.  The phase-change kinetics of amorphous Ge2Sb2Te5 and device characteristics investigated by thin-film mechanics , 2015 .

[34]  W. Hoyer,et al.  The short range order of liquid eutectic AIII-Te and AIV-Te alloys , 1996 .

[35]  Carl V. Thompson,et al.  On the approximation of the free energy change on crystallization , 1979 .

[36]  Norikazu Ohshima,et al.  Crystallization of germanium–antimony–tellurium amorphous thin film sandwiched between various dielectric protective films , 1996 .

[37]  V. Weidenhof,et al.  Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements , 2000 .

[38]  Tobias Van Damme,et al.  Unraveling Crystal Growth in GeSb Phase-Change Films in between the Glass-Transition and Melting Temperatures , 2014 .

[39]  何敖东,et al.  Ge 2 Sb 2 Te 5 的化学机械抛光研究进展 , 2013 .

[40]  T. Grande,et al.  Fragility transition in GeSe2–Se liquids , 2002 .

[41]  J. González-Hernández,et al.  Determination of the glass transition and nucleation temperatures in Ge2Sb2Te5 sputtered films , 2002 .

[42]  C. Angell,et al.  Phase change alloy viscosities down to T g using Adam-Gibbs-equation fittings to excess entropy data: A fragile-to-strong transition , 2015 .

[43]  Manuel Le Gallo,et al.  Stochastic phase-change neurons. , 2016, Nature nanotechnology.

[44]  G. W. Burr,et al.  Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element , 2015, 2014 IEEE International Electron Devices Meeting.

[45]  R. O. Jones,et al.  Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe , 2007 .

[46]  David Turnbull,et al.  Calorimetric studies of crystallization and relaxation of amorphous Si and Ge prepared by ion implantation , 1985 .

[47]  Valerio Pruneri,et al.  Time-domain separation of optical properties from structural transitions in resonantly bonded materials. , 2014, Nature materials.

[48]  A. Pirovano,et al.  A Reliable Technique for Experimental Evaluation of Crystallization Activation Energy in PCMs , 2008, IEEE Electron Device Letters.

[49]  Xiaoqian Wei,et al.  Thickness Dependent Nano-Crystallization in Ge2Sb2Te5 Films and Its Effect on Devices , 2007 .

[50]  R. Zonca,et al.  Crystal nucleation and growth processes in Ge2Sb2Te5 , 2004 .

[51]  Daniel W. Hewak,et al.  Fragile‐to‐Strong Crossover in Supercooled Liquid Ag‐In‐Sb‐Te Studied by Ultrafast Calorimetry , 2015 .

[52]  Songlin Feng,et al.  Carbon-doped Ge2Sb2Te5 phase change material: A candidate for high-density phase change memory application , 2012 .

[53]  Matthias Wuttig,et al.  Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording , 2007 .

[54]  Eric Pop,et al.  Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes , 2011, Science.

[55]  Yeonwoong Jung,et al.  Size-dependent surface-induced heterogeneous nucleation driven phase-change in Ge2Sb2Te5 nanowires. , 2008, Nano letters.

[56]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .