Self‐Organized Origami Structures via Ion‐Induced Plastic Strain

Ion processing of the reactive surface of a free-standing polycrystalline metal film induces a flow of atoms into grain boundaries, resulting in plastic deformation. A thorough experimental and theoretical analysis of this process is presented, along with the demonstration of novel engineering concepts for precisely controlled 3D assembly at micro- and nanoscopic scales.

[1]  G. Schumacher,et al.  Grain rotation in nanocrystalline layers under influence of swift heavy ions , 2008 .

[2]  P. Sigmund Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets , 1969 .

[3]  S. Vogel Current-induced flow through living sponges in nature. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Peter Fratzl,et al.  Origami-like unfolding of hydro-actuated ice plant seed capsules. , 2011, Nature communications.

[5]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[6]  L. Freund,et al.  Origin of compressive residual stress in polycrystalline thin films. , 2002, Physical review letters.

[7]  Jeong-Hyun Cho,et al.  Plastic deformation drives wrinkling, saddling, and wedging of annular bilayer nanostructures. , 2010, Nano letters.

[8]  G. Stoney The Tension of Metallic Films Deposited by Electrolysis , 1909 .

[9]  G. Schumacher,et al.  Ion-beam-induced collective rotation of nanocrystals. , 2008, Physical review letters.

[10]  G. Dienes Effects of Nuclear Radiations on the Mechanical Properties of Solids , 1953 .

[11]  Andrew M. Minor,et al.  Focused Ion Beam Microscopy and Micromachining , 2007 .

[12]  Ji Zang,et al.  Mechanism for nanotube formation from self-bending nanofilms driven by atomic-scale surface-stress imbalance. , 2007, Physical review letters.

[13]  W. Primak Radiation‐Induced Stress Relaxation in Quartz and Vitreous Silica , 1964 .

[14]  Rolling up SiGe on insulator , 2007 .

[15]  Henry I. Smith,et al.  Membrane folding by helium ion implantation for three-dimensional device fabrication , 2007 .

[16]  David H. Gracias,et al.  Curving Nanostructures Using Extrinsic Stress , 2010, Advanced materials.

[17]  Feng Liu,et al.  Nanomechanical Architecture of Strained Bilayer Thin Films: From Design Principles to Experimental Fabrication , 2005 .

[18]  Ting Zhu,et al.  Temperature and strain-rate dependence of surface dislocation nucleation. , 2008, Physical review letters.

[19]  Y-R Kim,et al.  Focused ion beam induced deflections of freestanding thin films. , 2006, Journal of applied physics.

[20]  P Sigmund,et al.  スパッタの理論 I 非晶質のスパッタ収量と多結晶ターゲット , 1969 .

[21]  J. Rogers,et al.  Synthesis, assembly and applications of semiconductor nanomembranes , 2011, Nature.

[22]  H. V. Swygenhoven,et al.  Grain Boundaries and Dislocations , 2002 .

[23]  Jian-sheng Wu,et al.  TEM investigation of FIB induced damages in preparation of metal material TEM specimens by FIB , 2006 .

[24]  George Barbastathis,et al.  Membrane folding by ion implantation induced stress to fabricate three-dimensional nanostructures , 2007 .

[25]  G. Schumacher,et al.  Dramatic Growth of Glassy Pd 80 Si 20 during Heavy-Ion Irradiation , 1983 .

[26]  Cynthia A. Volkert,et al.  Stress and plastic flow in silicon during amorphization by ion bombardment , 1991 .

[27]  Zetian Mi,et al.  Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers. , 2009, Optics express.

[28]  M. Lounsbury,et al.  THE RANGE OF ALKALI METAL IONS OF KILOELECTRON VOLT ENERGIES IN ALUMINUM , 1960 .

[29]  Oliver G Schmidt,et al.  Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells. , 2009, Lab on a chip.

[30]  M. A. Putyato,et al.  Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays , 2000 .

[31]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[32]  O. Schmidt,et al.  Nanotechnology: Thin solid films roll up into nanotubes , 2001, Nature.

[33]  H. Horiuchi,et al.  Relaxation of supercoiled plasmid DNA by oxidative stresses in Escherichia coli , 1984, Journal of bacteriology.

[34]  Reinhold Koch,et al.  The intrinsic stress of polycrystalline and epitaxial thin metal films , 1994 .

[35]  O. Schmidt,et al.  Free-standing SiGe-based nanopipelines on Si (001) substrates , 2001 .

[36]  E. Kauppinen,et al.  Gas-phase synthesis of l-leucine-coated micrometer-sized salbutamol sulphate and sodium chloride particles , 2008 .

[37]  M. Jenko,et al.  FIB damage of Cu and possible consequences for miniaturized mechanical tests , 2007 .

[38]  Alberto Piqué,et al.  Laser induced extraplanar propulsion for three-dimensional microfabrication , 2011 .

[39]  T. Page,et al.  An investigation of ion implantation-induced near-surface stresses and their effects in sapphire and glass , 1985 .

[40]  N. Bartelt,et al.  Identifying the forces responsible for self-organization of nanostructures at crystal surfaces , 1999, Nature.

[41]  R. Averback,et al.  Effect of ion bombardment on stress in thin metal films , 2003 .

[42]  J. Brinkman Production of Atomic Displacements by High-Energy Particles , 1956 .

[43]  K. Jacobsen,et al.  A Maximum in the Strength of Nanocrystalline Copper , 2003, Science.

[44]  J. C. Slater The Effects of Radiation on Materials , 1951 .

[45]  Haiyi Liang,et al.  Growth, geometry, and mechanics of a blooming lily , 2011, Proceedings of the National Academy of Sciences.

[46]  E. P. Eernisse,et al.  Volume expansion and annealing compaction of ion‐bombarded single‐crystal and polycrystalline α‐Al2O3 , 1978 .

[47]  D. Gianola,et al.  Experimental Observations of Stress-Driven Grain Boundary Migration , 2009, Science.