From Cs2Mo6Cl14 to Cs2Mo6Cl14·H2O and Vice Versa: Crystal Chemistry Investigations

[1]  S. M. García,et al.  2014: , 2020, A Party for Lazarus.

[2]  S. Hewitt,et al.  2006 , 2018, Los 25 años de la OMC: Una retrospectiva fotográfica.

[3]  J. Cross,et al.  Theoretical and experimental determination of the crystal structures of cesium–molybdenum chloride , 2016 .

[4]  S. Laschat,et al.  Phosphorescent columnar hybrid materials containing polyionic inorganic nanoclusters. , 2016, Chemical communications.

[5]  J. Duvail,et al.  Versatility of the ionic assembling method to design highly luminescent PMMA nanocomposites containing [M6Q(i)8L(a)6](n-) octahedral nano-building blocks. , 2016, Dalton transactions.

[6]  Thi Kim Ngan Nguyen,et al.  Visible tunable lighting system based on polymer composites embedding ZnO and metallic clusters: from colloids to thin films , 2016, Science and technology of advanced materials.

[7]  B. Fontaine,et al.  Combined theoretical and time-resolved photoluminescence investigations of [Mo₆Brⁱ₈Br(a)₆]²⁻ metal cluster units: evidence of dual emission. , 2015, Physical chemistry chemical physics : PCCP.

[8]  R. Lefort,et al.  Design and Integration in Electro‐Optic Devices of Highly Efficient and Robust Red‐NIR Phosphorescent Nematic Hybrid Liquid Crystals Containing [Mo6I8(OCOCnF2n+1)6]2− (n = 1, 2, 3) Nanoclusters , 2015 .

[9]  S. Députier,et al.  Surface immobilization of Mo6I8 octahedral cluster cores on functionalized amorphous carbon using a pyridine complexation strategy , 2015 .

[10]  R. Boukherroub,et al.  Inorganic Molybdenum Octahedral Nanosized Cluster Units, Versatile Functional Building Block for Nanoarchitectonics , 2015, Journal of Inorganic and Organometallic Polymers and Materials.

[11]  S. Cordier,et al.  Tuned red NIR phosphorescence of polyurethane hybrid composites embedding metallic nanoclusters for oxygen sensing. , 2015, Chemical communications.

[12]  S. Cordier,et al.  From metallic cluster-based ceramics to nematic hybrid liquid crystals: a double supramolecular approach. , 2015, Chemical communications.

[13]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[14]  T. Aubert,et al.  Multifunctional hybrid silica nanoparticles based on [Mo₆Br₁₄]²⁻ phosphorescent nanosized clusters, magnetic γ-Fe₂O₃ and plasmonic gold nanoparticles. , 2014, Journal of colloid and interface science.

[15]  R. Boukherroub,et al.  Photoreduction of CO2 to methanol with hexanuclear molybdenum [Mo6Br14]2− cluster units under visible light irradiation , 2014 .

[16]  J. Duvail,et al.  Deep red luminescent hybrid copolymer materials with high transition metal cluster content , 2014 .

[17]  C. Labbé,et al.  Sensitization of Er3+ Infrared Photoluminescence Embedded in a Hybrid Organic‐Inorganic Copolymer containing Octahedral Molybdenum Clusters , 2013 .

[18]  T. Aubert,et al.  Extended Investigations on Luminescent Cs2[Mo6Br14]@SiO2 Nanoparticles: Physico-Structural Characterizations and Toxicity Studies , 2013 .

[19]  Richard R. Lunt,et al.  Transparent Luminescent Solar Concentrators for Large‐Area Solar Windows Enabled by Massive Stokes‐Shift Nanocluster Phosphors , 2013 .

[20]  R. Boukherroub,et al.  One-pot synthesis of gold nanoparticle/molybdenum cluster/graphene oxide nanocomposite and its photocatalytic activity , 2013 .

[21]  Louis J. Farrugia,et al.  WinGX and ORTEP for Windows: an update , 2012 .

[22]  R. Boukherroub,et al.  Fast photocatalytic degradation of rhodamine B over [Mo6Br8(N3)6]2− cluster units under sun light irradiation , 2012 .

[23]  K. Brylev,et al.  Highly luminescent complexes [Mo6X8(n-C3F7COO)6]2- (X=Br, I). , 2011, Dalton transactions.

[24]  F. Artzner,et al.  Clustomesogens: liquid crystal materials containing transition-metal clusters. , 2010, Angewandte Chemie.

[25]  Stéphane Cordier,et al.  Functional silica nanoparticles synthesized by water-in-oil microemulsion processes. , 2010, Journal of colloid and interface science.

[26]  M. Mortier,et al.  Novel Nanomaterials Based on Inorganic Molybdenum Octahedral Clusters , 2009 .

[27]  Y. Bando,et al.  Water‐in‐Oil Microemulsion Preparation and Characterization of Cs2[Mo6X14]@SiO2 Phosphor Nanoparticles Based on Transition Metal Clusters (X = Cl, Br, and I) , 2008 .

[28]  D. Astruc,et al.  Mo6X8i Nanocluster cores (X = Br, I): From inorganic solid state compounds to hybrids , 2006 .

[29]  T. Roisnel,et al.  Solid state synthesis, structures and redox properties of the new [Mo6Bri7TeiBra6]3− and [Mo6Bri7SeiBra6]3− octahedral cluster units: Crystallochemistry of the Rb2+xMo6Bri8−xYixBra6 series (x=0.5 for Y=Te; 0.25⩽x⩽0.7 for Y=Se) and Rb2Mo6Br14 , 2005 .

[30]  S. Cordier,et al.  Synthesis and Characterization of Cs2Mo6X14 (X = Br or I) Hexamolybdenum Cluster Halides: Efficient Mo6 Cluster Precursors for Solution Chemistry Syntheses , 2005 .

[31]  T. Hirsch,et al.  The structures of X2[(Mo6Cl8)Cl6]·nH2O, X=NH4, K, Rb, Cs , 2004 .

[32]  T. Roisnel,et al.  WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis , 2001 .

[33]  A. Lachgar,et al.  Synthesis, Structure, and Decomposition of (NH4)2[Mo6Cl14] · H2O , 1999 .

[34]  Maria Cristina Burla,et al.  SIR97: a new tool for crystal structure determination and refinement , 1999 .

[35]  K. Peters,et al.  Syntheses and Crystal Structures of the Cluster Compounds A2[(W6Bri8)Bra6] with A = K, Rb, Cs , 1998 .

[36]  R. E. Marsh Some Thoughts on Choosing the Correct Space Group , 1995 .

[37]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[38]  M. Sergent,et al.  Crystallochemistry of some new niobium bromides with (Nb6Br18) units : structures of CsErNb6Br18 and Cs2EuNb6Br18 , 1993 .

[39]  T. Azumi,et al.  Phosphorescence from the triplet spin sublevels of a hexanuclear molybdenum(II) chloride cluster ion, [Mo6Cl14]2-. Relative radiative rate constants for emitting sublevels , 1992 .

[40]  Y. Le Page,et al.  MISSYM1.1 – a flexible new release , 1988 .

[41]  Y. Le Page,et al.  Computer derivation of the symmetry elements implied in a structure description , 1987 .

[42]  M. Potel,et al.  New families of ternary molybdenum (II) chlorides with octahedral Mo6 clusters , 1986 .

[43]  S. Hewitt,et al.  1981 , 1982, Syria 1975/76-2018.

[44]  A. Maverick,et al.  Solar Chemistry of Metal Complexes , 1981, Science.

[45]  H. Gray,et al.  Luminescence and redox photochemistry of the molybdenum(II) cluster Mo/sub 6/Cl/sub 14//sup 2 -/ , 1981 .

[46]  Christopher J. Traverse,et al.  Phosphorescent Nanocluster Light‐Emitting Diodes , 2016, Advanced materials.

[47]  V. F. Sears Neutron scattering lengths and cross sections , 1992 .

[48]  T. Adaway,et al.  Convenient synthesis of the hexanuclear molybdenum(II) halides Mo6Cl12 and Mo6Br12·2H2O , 1980 .

[49]  P. Healy,et al.  Crystal structure of dicaesium octa-µ3-chloro-hexachloro-octahedro-hexa-tungstate(II) and -molybdate(II) complexes , 1973 .

[50]  F. Cotton,et al.  Far-infrared spectra of metal atom cluster compounds. I. Mo6X34+ derivatives , 1967 .