From Cs2Mo6Cl14 to Cs2Mo6Cl14·H2O and Vice Versa: Crystal Chemistry Investigations
暂无分享,去创建一个
V. Nassif | P. Lemoine | T. Roisnel | S. Cordier | N. Ohashi | Y. Wada | F. Grasset | M. Amela‐Cortes | N. Dumait | S. Paofai | N. Saito
[1] S. M. García,et al. 2014: , 2020, A Party for Lazarus.
[2] S. Hewitt,et al. 2006 , 2018, Los 25 años de la OMC: Una retrospectiva fotográfica.
[3] J. Cross,et al. Theoretical and experimental determination of the crystal structures of cesium–molybdenum chloride , 2016 .
[4] S. Laschat,et al. Phosphorescent columnar hybrid materials containing polyionic inorganic nanoclusters. , 2016, Chemical communications.
[5] J. Duvail,et al. Versatility of the ionic assembling method to design highly luminescent PMMA nanocomposites containing [M6Q(i)8L(a)6](n-) octahedral nano-building blocks. , 2016, Dalton transactions.
[6] Thi Kim Ngan Nguyen,et al. Visible tunable lighting system based on polymer composites embedding ZnO and metallic clusters: from colloids to thin films , 2016, Science and technology of advanced materials.
[7] B. Fontaine,et al. Combined theoretical and time-resolved photoluminescence investigations of [Mo₆Brⁱ₈Br(a)₆]²⁻ metal cluster units: evidence of dual emission. , 2015, Physical chemistry chemical physics : PCCP.
[8] R. Lefort,et al. Design and Integration in Electro‐Optic Devices of Highly Efficient and Robust Red‐NIR Phosphorescent Nematic Hybrid Liquid Crystals Containing [Mo6I8(OCOCnF2n+1)6]2− (n = 1, 2, 3) Nanoclusters , 2015 .
[9] S. Députier,et al. Surface immobilization of Mo6I8 octahedral cluster cores on functionalized amorphous carbon using a pyridine complexation strategy , 2015 .
[10] R. Boukherroub,et al. Inorganic Molybdenum Octahedral Nanosized Cluster Units, Versatile Functional Building Block for Nanoarchitectonics , 2015, Journal of Inorganic and Organometallic Polymers and Materials.
[11] S. Cordier,et al. Tuned red NIR phosphorescence of polyurethane hybrid composites embedding metallic nanoclusters for oxygen sensing. , 2015, Chemical communications.
[12] S. Cordier,et al. From metallic cluster-based ceramics to nematic hybrid liquid crystals: a double supramolecular approach. , 2015, Chemical communications.
[13] G. Sheldrick. Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.
[14] T. Aubert,et al. Multifunctional hybrid silica nanoparticles based on [Mo₆Br₁₄]²⁻ phosphorescent nanosized clusters, magnetic γ-Fe₂O₃ and plasmonic gold nanoparticles. , 2014, Journal of colloid and interface science.
[15] R. Boukherroub,et al. Photoreduction of CO2 to methanol with hexanuclear molybdenum [Mo6Br14]2− cluster units under visible light irradiation , 2014 .
[16] J. Duvail,et al. Deep red luminescent hybrid copolymer materials with high transition metal cluster content , 2014 .
[17] C. Labbé,et al. Sensitization of Er3+ Infrared Photoluminescence Embedded in a Hybrid Organic‐Inorganic Copolymer containing Octahedral Molybdenum Clusters , 2013 .
[18] T. Aubert,et al. Extended Investigations on Luminescent Cs2[Mo6Br14]@SiO2 Nanoparticles: Physico-Structural Characterizations and Toxicity Studies , 2013 .
[19] Richard R. Lunt,et al. Transparent Luminescent Solar Concentrators for Large‐Area Solar Windows Enabled by Massive Stokes‐Shift Nanocluster Phosphors , 2013 .
[20] R. Boukherroub,et al. One-pot synthesis of gold nanoparticle/molybdenum cluster/graphene oxide nanocomposite and its photocatalytic activity , 2013 .
[21] Louis J. Farrugia,et al. WinGX and ORTEP for Windows: an update , 2012 .
[22] R. Boukherroub,et al. Fast photocatalytic degradation of rhodamine B over [Mo6Br8(N3)6]2− cluster units under sun light irradiation , 2012 .
[23] K. Brylev,et al. Highly luminescent complexes [Mo6X8(n-C3F7COO)6]2- (X=Br, I). , 2011, Dalton transactions.
[24] F. Artzner,et al. Clustomesogens: liquid crystal materials containing transition-metal clusters. , 2010, Angewandte Chemie.
[25] Stéphane Cordier,et al. Functional silica nanoparticles synthesized by water-in-oil microemulsion processes. , 2010, Journal of colloid and interface science.
[26] M. Mortier,et al. Novel Nanomaterials Based on Inorganic Molybdenum Octahedral Clusters , 2009 .
[27] Y. Bando,et al. Water‐in‐Oil Microemulsion Preparation and Characterization of Cs2[Mo6X14]@SiO2 Phosphor Nanoparticles Based on Transition Metal Clusters (X = Cl, Br, and I) , 2008 .
[28] D. Astruc,et al. Mo6X8i Nanocluster cores (X = Br, I): From inorganic solid state compounds to hybrids , 2006 .
[29] T. Roisnel,et al. Solid state synthesis, structures and redox properties of the new [Mo6Bri7TeiBra6]3− and [Mo6Bri7SeiBra6]3− octahedral cluster units: Crystallochemistry of the Rb2+xMo6Bri8−xYixBra6 series (x=0.5 for Y=Te; 0.25⩽x⩽0.7 for Y=Se) and Rb2Mo6Br14 , 2005 .
[30] S. Cordier,et al. Synthesis and Characterization of Cs2Mo6X14 (X = Br or I) Hexamolybdenum Cluster Halides: Efficient Mo6 Cluster Precursors for Solution Chemistry Syntheses , 2005 .
[31] T. Hirsch,et al. The structures of X2[(Mo6Cl8)Cl6]·nH2O, X=NH4, K, Rb, Cs , 2004 .
[32] T. Roisnel,et al. WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis , 2001 .
[33] A. Lachgar,et al. Synthesis, Structure, and Decomposition of (NH4)2[Mo6Cl14] · H2O , 1999 .
[34] Maria Cristina Burla,et al. SIR97: a new tool for crystal structure determination and refinement , 1999 .
[35] K. Peters,et al. Syntheses and Crystal Structures of the Cluster Compounds A2[(W6Bri8)Bra6] with A = K, Rb, Cs , 1998 .
[36] R. E. Marsh. Some Thoughts on Choosing the Correct Space Group , 1995 .
[37] Juan Rodríguez-Carvajal,et al. Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .
[38] M. Sergent,et al. Crystallochemistry of some new niobium bromides with (Nb6Br18) units : structures of CsErNb6Br18 and Cs2EuNb6Br18 , 1993 .
[39] T. Azumi,et al. Phosphorescence from the triplet spin sublevels of a hexanuclear molybdenum(II) chloride cluster ion, [Mo6Cl14]2-. Relative radiative rate constants for emitting sublevels , 1992 .
[40] Y. Le Page,et al. MISSYM1.1 – a flexible new release , 1988 .
[41] Y. Le Page,et al. Computer derivation of the symmetry elements implied in a structure description , 1987 .
[42] M. Potel,et al. New families of ternary molybdenum (II) chlorides with octahedral Mo6 clusters , 1986 .
[43] S. Hewitt,et al. 1981 , 1982, Syria 1975/76-2018.
[44] A. Maverick,et al. Solar Chemistry of Metal Complexes , 1981, Science.
[45] H. Gray,et al. Luminescence and redox photochemistry of the molybdenum(II) cluster Mo/sub 6/Cl/sub 14//sup 2 -/ , 1981 .
[46] Christopher J. Traverse,et al. Phosphorescent Nanocluster Light‐Emitting Diodes , 2016, Advanced materials.
[47] V. F. Sears. Neutron scattering lengths and cross sections , 1992 .
[48] T. Adaway,et al. Convenient synthesis of the hexanuclear molybdenum(II) halides Mo6Cl12 and Mo6Br12·2H2O , 1980 .
[49] P. Healy,et al. Crystal structure of dicaesium octa-µ3-chloro-hexachloro-octahedro-hexa-tungstate(II) and -molybdate(II) complexes , 1973 .
[50] F. Cotton,et al. Far-infrared spectra of metal atom cluster compounds. I. Mo6X34+ derivatives , 1967 .